പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-3x^{2}=5x
ഇരുവശങ്ങളിൽ നിന്നും 3x^{2} കുറയ്ക്കുക.
x-3x^{2}-5x=0
ഇരുവശങ്ങളിൽ നിന്നും 5x കുറയ്ക്കുക.
-4x-3x^{2}=0
-4x നേടാൻ x, -5x എന്നിവ യോജിപ്പിക്കുക.
x\left(-4-3x\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-\frac{4}{3}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, -4-3x=0 എന്നിവ സോൾവ് ചെയ്യുക.
x-3x^{2}=5x
ഇരുവശങ്ങളിൽ നിന്നും 3x^{2} കുറയ്ക്കുക.
x-3x^{2}-5x=0
ഇരുവശങ്ങളിൽ നിന്നും 5x കുറയ്ക്കുക.
-4x-3x^{2}=0
-4x നേടാൻ x, -5x എന്നിവ യോജിപ്പിക്കുക.
-3x^{2}-4x=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-3\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -3 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-4\right)±4}{2\left(-3\right)}
\left(-4\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4±4}{2\left(-3\right)}
-4 എന്നതിന്‍റെ വിപരീതം 4 ആണ്.
x=\frac{4±4}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{8}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±4}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 4 എന്നതിൽ ചേർക്കുക.
x=-\frac{4}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{8}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{0}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±4}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x=0
-6 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{4}{3} x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x-3x^{2}=5x
ഇരുവശങ്ങളിൽ നിന്നും 3x^{2} കുറയ്ക്കുക.
x-3x^{2}-5x=0
ഇരുവശങ്ങളിൽ നിന്നും 5x കുറയ്ക്കുക.
-4x-3x^{2}=0
-4x നേടാൻ x, -5x എന്നിവ യോജിപ്പിക്കുക.
-3x^{2}-4x=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-3x^{2}-4x}{-3}=\frac{0}{-3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{4}{-3}\right)x=\frac{0}{-3}
-3 കൊണ്ട് ഹരിക്കുന്നത്, -3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{4}{3}x=\frac{0}{-3}
-3 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{4}{3}x=0
-3 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\left(\frac{2}{3}\right)^{2}
\frac{2}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{4}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{2}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{2}{3} സ്ക്വയർ ചെയ്യുക.
\left(x+\frac{2}{3}\right)^{2}=\frac{4}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{2}{3}=\frac{2}{3} x+\frac{2}{3}=-\frac{2}{3}
ലഘൂകരിക്കുക.
x=0 x=-\frac{4}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{2}{3} കുറയ്ക്കുക.