x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{1}{2}=0.5
x=-\frac{1}{2}=-0.5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x-\frac{1}{4x}=0
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4x} കുറയ്ക്കുക.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x, \frac{4x}{4x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x\times 4x-1}{4x}=0
\frac{x\times 4x}{4x}, \frac{1}{4x} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{4x^{2}-1}{4x}=0
x\times 4x-1 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
4x^{2}-1=0
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും 4x കൊണ്ട് ഗുണിക്കുക.
\left(2x-1\right)\left(2x+1\right)=0
4x^{2}-1 പരിഗണിക്കുക. 4x^{2}-1 എന്നത് \left(2x\right)^{2}-1^{2} എന്നായി തിരുത്തിയെഴുതുക. ചതുരങ്ങളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{2} x=-\frac{1}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 2x-1=0, 2x+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x-\frac{1}{4x}=0
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4x} കുറയ്ക്കുക.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x, \frac{4x}{4x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x\times 4x-1}{4x}=0
\frac{x\times 4x}{4x}, \frac{1}{4x} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{4x^{2}-1}{4x}=0
x\times 4x-1 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
4x^{2}-1=0
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും 4x കൊണ്ട് ഗുണിക്കുക.
4x^{2}=1
1 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x^{2}=\frac{1}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x=\frac{1}{2} x=-\frac{1}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{4x}=0
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4x} കുറയ്ക്കുക.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x, \frac{4x}{4x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x\times 4x-1}{4x}=0
\frac{x\times 4x}{4x}, \frac{1}{4x} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{4x^{2}-1}{4x}=0
x\times 4x-1 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
4x^{2}-1=0
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും 4x കൊണ്ട് ഗുണിക്കുക.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-1\right)}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 0 എന്നതും c എന്നതിനായി -1 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{0±\sqrt{-4\times 4\left(-1\right)}}{2\times 4}
0 സ്ക്വയർ ചെയ്യുക.
x=\frac{0±\sqrt{-16\left(-1\right)}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0±\sqrt{16}}{2\times 4}
-16, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0±4}{2\times 4}
16 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{0±4}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{1}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{0±4}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{1}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{0±4}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-4}{8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{1}{2} x=-\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}