y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
y=\left(x^{2}-4\right)x^{x-1}
x\neq 0
y എന്നതിനായി സോൾവ് ചെയ്യുക
y=\left(x^{2}-4\right)x^{x-1}
\left(x<0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }x>0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
xy=x^{x}x^{2}-4x^{x}
x^{2}-4 കൊണ്ട് x^{x} ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xy=x^{x+2}-4x^{x}
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xy}{x}=\frac{\left(x^{2}-4\right)x^{x}}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
y=\frac{\left(x^{2}-4\right)x^{x}}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=\left(x^{2}-4\right)x^{x-1}
x കൊണ്ട് x^{x}\left(x^{2}-4\right) എന്നതിനെ ഹരിക്കുക.
xy=x^{x}x^{2}-4x^{x}
x^{2}-4 കൊണ്ട് x^{x} ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xy=x^{x+2}-4x^{x}
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xy}{x}=\frac{\left(x^{2}-4\right)x^{x}}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
y=\frac{\left(x^{2}-4\right)x^{x}}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=\left(x^{2}-4\right)x^{x-1}
x കൊണ്ട് x^{x}\left(x^{2}-4\right) എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}