പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x_0 എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x_{0}^{2}-2x_{0}-3=0
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
a+b=-2 ab=-3
സമവാക്യം സോൾവ് ചെയ്യാൻ, x_{0}^{2}+\left(a+b\right)x_{0}+ab=\left(x_{0}+a\right)\left(x_{0}+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x_{0}^{2}-2x_{0}-3 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-3 b=1
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x_{0}-3\right)\left(x_{0}+1\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x_{0}+a\right)\left(x_{0}+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x_{0}=3 x_{0}=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x_{0}-3=0, x_{0}+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x_{0}^{2}-2x_{0}-3=0
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
a+b=-2 ab=1\left(-3\right)=-3
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x_{0}^{2}+ax_{0}+bx_{0}-3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-3 b=1
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x_{0}^{2}-3x_{0}\right)+\left(x_{0}-3\right)
x_{0}^{2}-2x_{0}-3 എന്നത് \left(x_{0}^{2}-3x_{0}\right)+\left(x_{0}-3\right) എന്നായി തിരുത്തിയെഴുതുക.
x_{0}\left(x_{0}-3\right)+x_{0}-3
x_{0}^{2}-3x_{0} എന്നതിൽ x_{0} ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x_{0}-3\right)\left(x_{0}+1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x_{0}-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x_{0}=3 x_{0}=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x_{0}-3=0, x_{0}+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x_{0}^{2}-2x_{0}=3
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x_{0}^{2}-2x_{0}-3=3-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
x_{0}^{2}-2x_{0}-3=0
അതിൽ നിന്നുതന്നെ 3 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x_{0}=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -2 എന്നതും c എന്നതിനായി -3 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x_{0}=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
-2 സ്ക്വയർ ചെയ്യുക.
x_{0}=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x_{0}=\frac{-\left(-2\right)±\sqrt{16}}{2}
4, 12 എന്നതിൽ ചേർക്കുക.
x_{0}=\frac{-\left(-2\right)±4}{2}
16 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x_{0}=\frac{2±4}{2}
-2 എന്നതിന്‍റെ വിപരീതം 2 ആണ്.
x_{0}=\frac{6}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x_{0}=\frac{2±4}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 2, 4 എന്നതിൽ ചേർക്കുക.
x_{0}=3
2 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x_{0}=-\frac{2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x_{0}=\frac{2±4}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 2 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x_{0}=-1
2 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
x_{0}=3 x_{0}=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x_{0}^{2}-2x_{0}=3
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x_{0}^{2}-2x_{0}+1=3+1
-1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x_{0}^{2}-2x_{0}+1=4
3, 1 എന്നതിൽ ചേർക്കുക.
\left(x_{0}-1\right)^{2}=4
x_{0}^{2}-2x_{0}+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x_{0}-1\right)^{2}}=\sqrt{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x_{0}-1=2 x_{0}-1=-2
ലഘൂകരിക്കുക.
x_{0}=3 x_{0}=-1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 1 ചേർക്കുക.