J എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}J=\frac{2a}{qrx}\text{, }&q\neq 0\text{ and }r\neq 0\text{ and }x\neq 0\\J\in \mathrm{C}\text{, }&\left(q=0\text{ or }r=0\text{ or }x=0\right)\text{ and }a=0\end{matrix}\right.
J എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}J=\frac{2a}{qrx}\text{, }&q\neq 0\text{ and }r\neq 0\text{ and }x\neq 0\\J\in \mathrm{R}\text{, }&\left(q=0\text{ or }r=0\text{ or }x=0\right)\text{ and }a=0\end{matrix}\right.
a എന്നതിനായി സോൾവ് ചെയ്യുക
a=\frac{Jqrx}{2}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
qrxJ=2a
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{qrxJ}{qrx}=\frac{2a}{qrx}
ഇരുവശങ്ങളെയും xrq കൊണ്ട് ഹരിക്കുക.
J=\frac{2a}{qrx}
xrq കൊണ്ട് ഹരിക്കുന്നത്, xrq കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
qrxJ=2a
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{qrxJ}{qrx}=\frac{2a}{qrx}
ഇരുവശങ്ങളെയും xrq കൊണ്ട് ഹരിക്കുക.
J=\frac{2a}{qrx}
xrq കൊണ്ട് ഹരിക്കുന്നത്, xrq കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
2a=xrqJ
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
2a=Jqrx
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{2a}{2}=\frac{Jqrx}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
a=\frac{Jqrx}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}