x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{5y}{3}
y\neq 0
y എന്നതിനായി സോൾവ് ചെയ്യുക
y=\frac{3x}{5}
x\neq 0
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x=y\times \frac{0.5}{0.3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x=y\times \frac{5}{3}
അംശത്തെയും ഛേദത്തെയും 10 കൊണ്ട് ഗുണിച്ച് \frac{0.5}{0.3} വിപുലീകരിക്കുക.
x=y\times \frac{0.5}{0.3}
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും y കൊണ്ട് ഗുണിക്കുക.
x=y\times \frac{5}{3}
അംശത്തെയും ഛേദത്തെയും 10 കൊണ്ട് ഗുണിച്ച് \frac{0.5}{0.3} വിപുലീകരിക്കുക.
y\times \frac{5}{3}=x
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\frac{5}{3}y=x
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\frac{5}{3}y}{\frac{5}{3}}=\frac{x}{\frac{5}{3}}
\frac{5}{3} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
y=\frac{x}{\frac{5}{3}}
\frac{5}{3} കൊണ്ട് ഹരിക്കുന്നത്, \frac{5}{3} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=\frac{3x}{5}
\frac{5}{3} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് x ഗുണിക്കുന്നതിലൂടെ \frac{5}{3} കൊണ്ട് x എന്നതിനെ ഹരിക്കുക.
y=\frac{3x}{5}\text{, }y\neq 0
y എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}