x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{-1+\sqrt{23}i}{6}\approx -0.166666667+0.799305254i
x=\frac{-\sqrt{23}i-1}{6}\approx -0.166666667-0.799305254i
ഗ്രാഫ്
ക്വിസ്
Quadratic Equation
ഇതിന് സമാനമായ 5 ചോദ്യങ്ങൾ:
x \cdot ( x - 1 ) = - 2 \cdot ( x ^ { 2 } + x + 1 )
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}-x=-2\left(x^{2}+x+1\right)
x-1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-x=-2x^{2}-2x-2
x^{2}+x+1 കൊണ്ട് -2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-x+2x^{2}=-2x-2
2x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-x=-2x-2
3x^{2} നേടാൻ x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-x+2x=-2
2x ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}+x=-2
x നേടാൻ -x, 2x എന്നിവ യോജിപ്പിക്കുക.
3x^{2}+x+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
x=\frac{-1±\sqrt{1^{2}-4\times 3\times 2}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-1±\sqrt{1-4\times 3\times 2}}{2\times 3}
1 സ്ക്വയർ ചെയ്യുക.
x=\frac{-1±\sqrt{1-12\times 2}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{1-24}}{2\times 3}
-12, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{-23}}{2\times 3}
1, -24 എന്നതിൽ ചേർക്കുക.
x=\frac{-1±\sqrt{23}i}{2\times 3}
-23 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-1±\sqrt{23}i}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1+\sqrt{23}i}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-1±\sqrt{23}i}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, i\sqrt{23} എന്നതിൽ ചേർക്കുക.
x=\frac{-\sqrt{23}i-1}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-1±\sqrt{23}i}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് i\sqrt{23} വ്യവകലനം ചെയ്യുക.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}-x=-2\left(x^{2}+x+1\right)
x-1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-x=-2x^{2}-2x-2
x^{2}+x+1 കൊണ്ട് -2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x^{2}-x+2x^{2}=-2x-2
2x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}-x=-2x-2
3x^{2} നേടാൻ x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
3x^{2}-x+2x=-2
2x ഇരു വശങ്ങളിലും ചേർക്കുക.
3x^{2}+x=-2
x നേടാൻ -x, 2x എന്നിവ യോജിപ്പിക്കുക.
\frac{3x^{2}+x}{3}=-\frac{2}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{1}{3}x=-\frac{2}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{6} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{1}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{1}{6} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{6} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{2}{3} എന്നത് \frac{1}{36} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{1}{6}\right)^{2}=-\frac{23}{36}
x^{2}+\frac{1}{3}x+\frac{1}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{1}{6}=\frac{\sqrt{23}i}{6} x+\frac{1}{6}=-\frac{\sqrt{23}i}{6}
ലഘൂകരിക്കുക.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{6} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}