ഘടകം
\left(x-1\right)^{2}\left(x+1\right)^{2}
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(x^{2}-1\right)^{2}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{4}-2x^{2}+1=0
ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യാൻ, അത് 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 1 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=1
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{3}+x^{2}-x-1=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്റെ ഒരു ഘടകമാണ് x-k. x^{3}+x^{2}-x-1 ലഭിക്കാൻ x-1 ഉപയോഗിച്ച് x^{4}-2x^{2}+1 വിഭജിക്കുക. ഫലം ഫാക്ടർ ചെയ്യാൻ, അത് 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
±1
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ -1 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും 1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. എല്ലാ കാൻഡിഡേറ്റുകളും \frac{p}{q} ലിസ്റ്റ് ചെയ്യുക.
x=1
കേവലവില പ്രകാരം ഏറ്റവും ചെറുതിൽ നിന്ന് തുടങ്ങി, എല്ലാ പൂർണ്ണസംഖ്യാ മൂല്യങ്ങളും പരീക്ഷിച്ചുനോക്കുന്നതിലൂടെ അത്തരമൊരു വർഗ്ഗം കണ്ടെത്തുക. പൂർണ്ണസംഖ്യാ വർഗ്ഗങ്ങൾ കണ്ടെത്തിയില്ലെങ്കിൽ, ഭിന്നങ്ങൾ പരീക്ഷിച്ചുനോക്കുക.
x^{2}+2x+1=0
ഘടക സിദ്ധാന്തം പ്രകാരം, ഓരോ വർഗ്ഗത്തിനുമുള്ള k ബഹുപദത്തിന്റെ ഒരു ഘടകമാണ് x-k. x^{2}+2x+1 ലഭിക്കാൻ x-1 ഉപയോഗിച്ച് x^{3}+x^{2}-x-1 വിഭജിക്കുക. ഫലം ഫാക്ടർ ചെയ്യാൻ, അത് 0 എന്നതിന് തുല്യമാകുന്നയിടത്ത് സമവാക്യം സോൾവ് ചെയ്യുക.
x=\frac{-2±\sqrt{2^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി 1 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{-2±0}{2}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=-1
പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.
\left(x-1\right)^{2}\left(x+1\right)^{2}
ലഭ്യമാക്കിയ വർഗ്ഗങ്ങൾ ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}