m എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}m=\log_{y}\left(\frac{x^{2}\ln(x)+2y+3x}{x^{3}}\right)+\frac{2\pi n_{1}i}{\ln(y)}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq -\frac{x\left(x\ln(x)+3\right)}{2}\text{ and }y\neq 1\text{ and }y\neq 0\text{ and }x\neq 0\\m\in \mathrm{C}\text{, }&\left(y=0\text{ and }x\left(x\ln(x)+3\right)=0\text{ and }x\neq 0\right)\text{ or }\left(y=1\text{ and }x\left(x\ln(x)-x^{2}+3\right)=-2\text{ and }x\neq 0\right)\end{matrix}\right.
m എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}m=\log_{y}\left(\frac{x^{2}\ln(x)+2y+3x}{x^{3}}\right)\text{, }&y\neq 1\text{ and }y>0\text{ and }y>-\frac{x\left(x\ln(x)+3\right)}{2}\text{ and }x>0\\m\in \mathrm{R}\text{, }&\left(y=-1\text{ and }x\left(x\ln(x)+x^{2}+3\right)=2\text{ and }x>0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\right)\text{ or }\left(y=1\text{ and }x\left(x\ln(x)-x^{2}+3\right)=-2\text{ and }x>0\right)\\m>0\text{, }&y=0\text{ and }x\left(x\ln(x)+3\right)=0\text{ and }x>0\end{matrix}\right.
ക്വിസ്
ഇതിന് സമാനമായ 5 ചോദ്യങ്ങൾ:
x ^ { 3 } y ^ { m } + 2 x y ^ { \prime } - 2 y = x ^ { 2 } \ln x + 3 x
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}