പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-2x-1=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-1\right)}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -2 എന്നതും c എന്നതിനായി -1 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{2±2\sqrt{2}}{2}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=\sqrt{2}+1 x=1-\sqrt{2}
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ x=\frac{2±2\sqrt{2}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)\leq 0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
x-\left(\sqrt{2}+1\right)\geq 0 x-\left(1-\sqrt{2}\right)\leq 0
ഫലം ≤0 ആകാൻ x-\left(\sqrt{2}+1\right), x-\left(1-\sqrt{2}\right) എന്നിവയിൽ ഒരു മൂല്യം ≥0 എന്നതും മറ്റൊന്ന് ≤0 എന്നതും ആയിരിക്കണം. x-\left(\sqrt{2}+1\right)\geq 0, x-\left(1-\sqrt{2}\right)\leq 0 എന്നിവ ആയിരിക്കുമ്പോഴുള്ള സ്ഥിതി പരിഗണിക്കുക.
x\in \emptyset
എല്ലാ x എന്നതിനായും ഇത് ഫാൾസ് ആണ്.
x-\left(1-\sqrt{2}\right)\geq 0 x-\left(\sqrt{2}+1\right)\leq 0
x-\left(\sqrt{2}+1\right)\leq 0, x-\left(1-\sqrt{2}\right)\geq 0 എന്നിവ ആയിരിക്കുമ്പോഴുള്ള സ്ഥിതി പരിഗണിക്കുക.
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x\in \left[1-\sqrt{2},\sqrt{2}+1\right] ആണ്.
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.