x ^ { 2 } ( 6 \% ) ^ { 2 } + ( 1 - x ) ^ { 2 } ( 2 \% ) ^ { 2 } + 2 x ( 1 - x ) \times 012 \times 6 \% \times 2 \% = 00327
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{1}{10}+\frac{3}{10}i=0.1+0.3i
x=\frac{1}{10}-\frac{3}{10}i=0.1-0.3i
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}\times \left(\frac{3}{50}\right)^{2}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}\times \frac{9}{2500}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2-ന്റെ പവറിലേക്ക് \frac{3}{50} കണക്കാക്കി \frac{9}{2500} നേടുക.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\left(1-x\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{1}{50}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \frac{1}{2500}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2-ന്റെ പവറിലേക്ക് \frac{1}{50} കണക്കാക്കി \frac{1}{2500} നേടുക.
x^{2}\times \frac{9}{2500}+\frac{1}{2500}-\frac{1}{1250}x+\frac{1}{2500}x^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{1}{2500} കൊണ്ട് 1-2x+x^{2} ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{1}{250}x^{2} നേടാൻ x^{2}\times \frac{9}{2500}, \frac{1}{2500}x^{2} എന്നിവ യോജിപ്പിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 നേടാൻ 2, 0 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 നേടാൻ 0, 12 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{3}{50}\times \frac{2}{100}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{2}{100}=0\times 0\times 327
0 നേടാൻ 0, \frac{3}{50} എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{1}{50}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)=0\times 0\times 327
0 നേടാൻ 0, \frac{1}{50} എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0=0\times 0\times 327
പൂജ്യത്തോട് ഗുണിക്കുന്ന എന്തിനും പൂജ്യം ലഭിക്കുന്നു.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 0\times 327
\frac{1}{2500} ലഭ്യമാക്കാൻ \frac{1}{2500}, 0 എന്നിവ ചേർക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 327
0 നേടാൻ 0, 0 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0
0 നേടാൻ 0, 327 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}-\frac{1}{1250}x+\frac{1}{2500}=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\left(-\frac{1}{1250}\right)^{2}-4\times \frac{1}{250}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി \frac{1}{250} എന്നതും b എന്നതിനായി -\frac{1}{1250} എന്നതും c എന്നതിനായി \frac{1}{2500} എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-4\times \frac{1}{250}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{1250} സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-\frac{2}{125}\times \frac{1}{2500}}}{2\times \frac{1}{250}}
-4, \frac{1}{250} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{\frac{1}{1562500}-\frac{1}{156250}}}{2\times \frac{1}{250}}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് -\frac{2}{125}, \frac{1}{2500} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{-\left(-\frac{1}{1250}\right)±\sqrt{-\frac{9}{1562500}}}{2\times \frac{1}{250}}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{1562500} എന്നത് -\frac{1}{156250} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{-\left(-\frac{1}{1250}\right)±\frac{3}{1250}i}{2\times \frac{1}{250}}
-\frac{9}{1562500} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{2\times \frac{1}{250}}
-\frac{1}{1250} എന്നതിന്റെ വിപരീതം \frac{1}{1250} ആണ്.
x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}}
2, \frac{1}{250} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\frac{1}{1250}+\frac{3}{1250}i}{\frac{1}{125}}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{1250}, \frac{3}{1250}i എന്നതിൽ ചേർക്കുക.
x=\frac{1}{10}+\frac{3}{10}i
\frac{1}{125} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{1250}+\frac{3}{1250}i ഗുണിക്കുന്നതിലൂടെ \frac{1}{125} കൊണ്ട് \frac{1}{1250}+\frac{3}{1250}i എന്നതിനെ ഹരിക്കുക.
x=\frac{\frac{1}{1250}-\frac{3}{1250}i}{\frac{1}{125}}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{\frac{1}{1250}±\frac{3}{1250}i}{\frac{1}{125}} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{1250} എന്നതിൽ നിന്ന് \frac{3}{1250}i വ്യവകലനം ചെയ്യുക.
x=\frac{1}{10}-\frac{3}{10}i
\frac{1}{125} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{1250}-\frac{3}{1250}i ഗുണിക്കുന്നതിലൂടെ \frac{1}{125} കൊണ്ട് \frac{1}{1250}-\frac{3}{1250}i എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{10}+\frac{3}{10}i x=\frac{1}{10}-\frac{3}{10}i
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}\times \left(\frac{3}{50}\right)^{2}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}\times \frac{9}{2500}+\left(1-x\right)^{2}\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2-ന്റെ പവറിലേക്ക് \frac{3}{50} കണക്കാക്കി \frac{9}{2500} നേടുക.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{2}{100}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\left(1-x\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \left(\frac{1}{50}\right)^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}\times \frac{9}{2500}+\left(1-2x+x^{2}\right)\times \frac{1}{2500}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
2-ന്റെ പവറിലേക്ക് \frac{1}{50} കണക്കാക്കി \frac{1}{2500} നേടുക.
x^{2}\times \frac{9}{2500}+\frac{1}{2500}-\frac{1}{1250}x+\frac{1}{2500}x^{2}+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{1}{2500} കൊണ്ട് 1-2x+x^{2} ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+2x\left(1-x\right)\times 0\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
\frac{1}{250}x^{2} നേടാൻ x^{2}\times \frac{9}{2500}, \frac{1}{2500}x^{2} എന്നിവ യോജിപ്പിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times 12\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 നേടാൻ 2, 0 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{6}{100}\times \frac{2}{100}=0\times 0\times 327
0 നേടാൻ 0, 12 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{3}{50}\times \frac{2}{100}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{2}{100}=0\times 0\times 327
0 നേടാൻ 0, \frac{3}{50} എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)\times \frac{1}{50}=0\times 0\times 327
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{100} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0x\left(1-x\right)=0\times 0\times 327
0 നേടാൻ 0, \frac{1}{50} എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x+0=0\times 0\times 327
പൂജ്യത്തോട് ഗുണിക്കുന്ന എന്തിനും പൂജ്യം ലഭിക്കുന്നു.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 0\times 327
\frac{1}{2500} ലഭ്യമാക്കാൻ \frac{1}{2500}, 0 എന്നിവ ചേർക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0\times 327
0 നേടാൻ 0, 0 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}+\frac{1}{2500}-\frac{1}{1250}x=0
0 നേടാൻ 0, 327 എന്നിവ ഗുണിക്കുക.
\frac{1}{250}x^{2}-\frac{1}{1250}x=-\frac{1}{2500}
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{2500} കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{\frac{1}{250}x^{2}-\frac{1}{1250}x}{\frac{1}{250}}=-\frac{\frac{1}{2500}}{\frac{1}{250}}
ഇരുവശങ്ങളെയും 250 കൊണ്ട് ഗുണിക്കുക.
x^{2}+\left(-\frac{\frac{1}{1250}}{\frac{1}{250}}\right)x=-\frac{\frac{1}{2500}}{\frac{1}{250}}
\frac{1}{250} കൊണ്ട് ഹരിക്കുന്നത്, \frac{1}{250} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{1}{5}x=-\frac{\frac{1}{2500}}{\frac{1}{250}}
\frac{1}{250} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -\frac{1}{1250} ഗുണിക്കുന്നതിലൂടെ \frac{1}{250} കൊണ്ട് -\frac{1}{1250} എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{5}x=-\frac{1}{10}
\frac{1}{250} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -\frac{1}{2500} ഗുണിക്കുന്നതിലൂടെ \frac{1}{250} കൊണ്ട് -\frac{1}{2500} എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=-\frac{1}{10}+\left(-\frac{1}{10}\right)^{2}
-\frac{1}{10} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{1}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{10} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{5}x+\frac{1}{100}=-\frac{1}{10}+\frac{1}{100}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{10} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{5}x+\frac{1}{100}=-\frac{9}{100}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{10} എന്നത് \frac{1}{100} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{10}\right)^{2}=-\frac{9}{100}
x^{2}-\frac{1}{5}x+\frac{1}{100} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{-\frac{9}{100}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{10}=\frac{3}{10}i x-\frac{1}{10}=-\frac{3}{10}i
ലഘൂകരിക്കുക.
x=\frac{1}{10}+\frac{3}{10}i x=\frac{1}{10}-\frac{3}{10}i
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{10} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}