x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{\sqrt{73} + 1}{6} \approx 1.590667291
x=\frac{1-\sqrt{73}}{6}\approx -1.257333958
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}-\frac{1}{3}x=2
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{3}x കുറയ്ക്കുക.
x^{2}-\frac{1}{3}x-2=0
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\left(-2\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -\frac{1}{3} എന്നതും c എന്നതിനായി -2 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\left(-2\right)}}{2}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{3} സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}+8}}{2}
-4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{73}{9}}}{2}
\frac{1}{9}, 8 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{73}}{3}}{2}
\frac{73}{9} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2}
-\frac{1}{3} എന്നതിന്റെ വിപരീതം \frac{1}{3} ആണ്.
x=\frac{\sqrt{73}+1}{2\times 3}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{3}, \frac{\sqrt{73}}{3} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{73}+1}{6}
2 കൊണ്ട് \frac{1+\sqrt{73}}{3} എന്നതിനെ ഹരിക്കുക.
x=\frac{1-\sqrt{73}}{2\times 3}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{1}{3} എന്നതിൽ നിന്ന് \frac{\sqrt{73}}{3} വ്യവകലനം ചെയ്യുക.
x=\frac{1-\sqrt{73}}{6}
2 കൊണ്ട് \frac{1-\sqrt{73}}{3} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}-\frac{1}{3}x=2
ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{3}x കുറയ്ക്കുക.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=2+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{1}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{6} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{3}x+\frac{1}{36}=2+\frac{1}{36}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{6} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{73}{36}
2, \frac{1}{36} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{1}{6}\right)^{2}=\frac{73}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{73}{36}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{6}=\frac{\sqrt{73}}{6} x-\frac{1}{6}=-\frac{\sqrt{73}}{6}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{6} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}