x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{\sqrt{601} + 11}{4} \approx 8.878825336
x=\frac{11-\sqrt{601}}{4}\approx -3.378825336
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2x^{2}-11x-60=0\times 8
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-11x-60=0
0 നേടാൻ 0, 8 എന്നിവ ഗുണിക്കുക.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-60\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -11 എന്നതും c എന്നതിനായി -60 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-60\right)}}{2\times 2}
-11 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-60\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-11\right)±\sqrt{121+480}}{2\times 2}
-8, -60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-11\right)±\sqrt{601}}{2\times 2}
121, 480 എന്നതിൽ ചേർക്കുക.
x=\frac{11±\sqrt{601}}{2\times 2}
-11 എന്നതിന്റെ വിപരീതം 11 ആണ്.
x=\frac{11±\sqrt{601}}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{601}+11}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{11±\sqrt{601}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11, \sqrt{601} എന്നതിൽ ചേർക്കുക.
x=\frac{11-\sqrt{601}}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{11±\sqrt{601}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11 എന്നതിൽ നിന്ന് \sqrt{601} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2x^{2}-11x-60=0\times 8
2x^{2} നേടാൻ x^{2}, x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-11x-60=0
0 നേടാൻ 0, 8 എന്നിവ ഗുണിക്കുക.
2x^{2}-11x=60
60 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{2x^{2}-11x}{2}=\frac{60}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{11}{2}x=\frac{60}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{11}{2}x=30
2 കൊണ്ട് 60 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=30+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{11}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{11}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{11}{2}x+\frac{121}{16}=30+\frac{121}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{11}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{601}{16}
30, \frac{121}{16} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{11}{4}\right)^{2}=\frac{601}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{601}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{11}{4}=\frac{\sqrt{601}}{4} x-\frac{11}{4}=-\frac{\sqrt{601}}{4}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{11}{4} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}