പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+4x+68=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-4±\sqrt{4^{2}-4\times 68}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 4 എന്നതും c എന്നതിനായി 68 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-4±\sqrt{16-4\times 68}}{2}
4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-4±\sqrt{16-272}}{2}
-4, 68 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{-256}}{2}
16, -272 എന്നതിൽ ചേർക്കുക.
x=\frac{-4±16i}{2}
-256 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-4+16i}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-4±16i}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4, 16i എന്നതിൽ ചേർക്കുക.
x=-2+8i
2 കൊണ്ട് -4+16i എന്നതിനെ ഹരിക്കുക.
x=\frac{-4-16i}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-4±16i}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4 എന്നതിൽ നിന്ന് 16i വ്യവകലനം ചെയ്യുക.
x=-2-8i
2 കൊണ്ട് -4-16i എന്നതിനെ ഹരിക്കുക.
x=-2+8i x=-2-8i
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+4x+68=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+4x+68-68=-68
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 68 കുറയ്ക്കുക.
x^{2}+4x=-68
അതിൽ നിന്നുതന്നെ 68 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+4x+2^{2}=-68+2^{2}
2 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 4-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 2 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+4x+4=-68+4
2 സ്ക്വയർ ചെയ്യുക.
x^{2}+4x+4=-64
-68, 4 എന്നതിൽ ചേർക്കുക.
\left(x+2\right)^{2}=-64
x^{2}+4x+4 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-64}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+2=8i x+2=-8i
ലഘൂകരിക്കുക.
x=-2+8i x=-2-8i
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.