x എന്നതിനായി സോൾവ് ചെയ്യുക
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=-\frac{1}{2}=-0.5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}+3x+\frac{5}{4}=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{5}{4}}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 3 എന്നതും c എന്നതിനായി \frac{5}{4} എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-3±\sqrt{9-4\times \frac{5}{4}}}{2}
3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-3±\sqrt{9-5}}{2}
-4, \frac{5}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{4}}{2}
9, -5 എന്നതിൽ ചേർക്കുക.
x=\frac{-3±2}{2}
4 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=-\frac{1}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-3±2}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, 2 എന്നതിൽ ചേർക്കുക.
x=-\frac{5}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-3±2}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് 2 വ്യവകലനം ചെയ്യുക.
x=-\frac{1}{2} x=-\frac{5}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}+3x+\frac{5}{4}=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+3x+\frac{5}{4}-\frac{5}{4}=-\frac{5}{4}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{4} കുറയ്ക്കുക.
x^{2}+3x=-\frac{5}{4}
അതിൽ നിന്നുതന്നെ \frac{5}{4} കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{3}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+3x+\frac{9}{4}=\frac{-5+9}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+3x+\frac{9}{4}=1
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{5}{4} എന്നത് \frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{3}{2}\right)^{2}=1
x^{2}+3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവായി, x^{2}+bx+c എന്നത് ഒരു കുറ്റമറ്റ സ്ക്വയറായിരിക്കുമ്പോൾ ഇത് എല്ലായ്പ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്നായി ഘടകമാക്കാനാകും.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{1}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{3}{2}=1 x+\frac{3}{2}=-1
ലഘൂകരിക്കുക.
x=-\frac{1}{2} x=-\frac{5}{2}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}