പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+3-4x=0
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
x^{2}-4x+3=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-4 ab=3
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}-4x+3 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-3 b=-1
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x-3\right)\left(x-1\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=3 x=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-3=0, x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+3-4x=0
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
x^{2}-4x+3=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-4 ab=1\times 3=3
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-3 b=-1
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x^{2}-3x\right)+\left(-x+3\right)
x^{2}-4x+3 എന്നത് \left(x^{2}-3x\right)+\left(-x+3\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-3\right)-\left(x-3\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-3\right)\left(x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=3 x=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-3=0, x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+3-4x=0
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
x^{2}-4x+3=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി 3 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
-4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
16, -12 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-4\right)±2}{2}
4 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4±2}{2}
-4 എന്നതിന്‍റെ വിപരീതം 4 ആണ്.
x=\frac{6}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±2}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 2 എന്നതിൽ ചേർക്കുക.
x=3
2 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±2}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 2 വ്യവകലനം ചെയ്യുക.
x=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=3 x=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+3-4x=0
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
x^{2}-4x=-3
ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
-2 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -4-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -2 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-4x+4=-3+4
-2 സ്ക്വയർ ചെയ്യുക.
x^{2}-4x+4=1
-3, 4 എന്നതിൽ ചേർക്കുക.
\left(x-2\right)^{2}=1
x^{2}-4x+4 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-2=1 x-2=-1
ലഘൂകരിക്കുക.
x=3 x=1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.