ഘടകം
\left(x-\left(-\sqrt{115}-10\right)\right)\left(x-\left(\sqrt{115}-10\right)\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
x^{2}+20x-15
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}+20x-15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-20±\sqrt{20^{2}-4\left(-15\right)}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-20±\sqrt{400-4\left(-15\right)}}{2}
20 സ്ക്വയർ ചെയ്യുക.
x=\frac{-20±\sqrt{400+60}}{2}
-4, -15 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-20±\sqrt{460}}{2}
400, 60 എന്നതിൽ ചേർക്കുക.
x=\frac{-20±2\sqrt{115}}{2}
460 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{115}-20}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-20±2\sqrt{115}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20, 2\sqrt{115} എന്നതിൽ ചേർക്കുക.
x=\sqrt{115}-10
2 കൊണ്ട് -20+2\sqrt{115} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{115}-20}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-20±2\sqrt{115}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20 എന്നതിൽ നിന്ന് 2\sqrt{115} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{115}-10
2 കൊണ്ട് -20-2\sqrt{115} എന്നതിനെ ഹരിക്കുക.
x^{2}+20x-15=\left(x-\left(\sqrt{115}-10\right)\right)\left(x-\left(-\sqrt{115}-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി -10+\sqrt{115} എന്നതും, x_{2}-നായി -10-\sqrt{115} എന്നതും പകരം വയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}