പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=16 ab=-512
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}+16x-512 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,512 -2,256 -4,128 -8,64 -16,32
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -512 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+512=511 -2+256=254 -4+128=124 -8+64=56 -16+32=16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-16 b=32
സൊല്യൂഷൻ എന്നത് 16 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x-16\right)\left(x+32\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=16 x=-32
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-16=0, x+32=0 എന്നിവ സോൾവ് ചെയ്യുക.
a+b=16 ab=1\left(-512\right)=-512
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-512 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,512 -2,256 -4,128 -8,64 -16,32
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -512 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+512=511 -2+256=254 -4+128=124 -8+64=56 -16+32=16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-16 b=32
സൊല്യൂഷൻ എന്നത് 16 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-16x\right)+\left(32x-512\right)
x^{2}+16x-512 എന്നത് \left(x^{2}-16x\right)+\left(32x-512\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-16\right)+32\left(x-16\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 32 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-16\right)\left(x+32\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-16 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=16 x=-32
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-16=0, x+32=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+16x-512=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-16±\sqrt{16^{2}-4\left(-512\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 16 എന്നതും c എന്നതിനായി -512 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-16±\sqrt{256-4\left(-512\right)}}{2}
16 സ്ക്വയർ ചെയ്യുക.
x=\frac{-16±\sqrt{256+2048}}{2}
-4, -512 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-16±\sqrt{2304}}{2}
256, 2048 എന്നതിൽ ചേർക്കുക.
x=\frac{-16±48}{2}
2304 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{32}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-16±48}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -16, 48 എന്നതിൽ ചേർക്കുക.
x=16
2 കൊണ്ട് 32 എന്നതിനെ ഹരിക്കുക.
x=-\frac{64}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-16±48}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -16 എന്നതിൽ നിന്ന് 48 വ്യവകലനം ചെയ്യുക.
x=-32
2 കൊണ്ട് -64 എന്നതിനെ ഹരിക്കുക.
x=16 x=-32
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+16x-512=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+16x-512-\left(-512\right)=-\left(-512\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 512 ചേർക്കുക.
x^{2}+16x=-\left(-512\right)
അതിൽ നിന്നുതന്നെ -512 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+16x=512
0 എന്നതിൽ നിന്ന് -512 വ്യവകലനം ചെയ്യുക.
x^{2}+16x+8^{2}=512+8^{2}
8 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 16-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 8 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+16x+64=512+64
8 സ്ക്വയർ ചെയ്യുക.
x^{2}+16x+64=576
512, 64 എന്നതിൽ ചേർക്കുക.
\left(x+8\right)^{2}=576
x^{2}+16x+64 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+8\right)^{2}}=\sqrt{576}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+8=24 x+8=-24
ലഘൂകരിക്കുക.
x=16 x=-32
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.