പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+14x-12=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-14±\sqrt{14^{2}-4\left(-12\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 14 എന്നതും c എന്നതിനായി -12 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-14±\sqrt{196-4\left(-12\right)}}{2}
14 സ്ക്വയർ ചെയ്യുക.
x=\frac{-14±\sqrt{196+48}}{2}
-4, -12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-14±\sqrt{244}}{2}
196, 48 എന്നതിൽ ചേർക്കുക.
x=\frac{-14±2\sqrt{61}}{2}
244 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{61}-14}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±2\sqrt{61}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14, 2\sqrt{61} എന്നതിൽ ചേർക്കുക.
x=\sqrt{61}-7
2 കൊണ്ട് -14+2\sqrt{61} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{61}-14}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±2\sqrt{61}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14 എന്നതിൽ നിന്ന് 2\sqrt{61} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{61}-7
2 കൊണ്ട് -14-2\sqrt{61} എന്നതിനെ ഹരിക്കുക.
x=\sqrt{61}-7 x=-\sqrt{61}-7
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+14x-12=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+14x-12-\left(-12\right)=-\left(-12\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 12 ചേർക്കുക.
x^{2}+14x=-\left(-12\right)
അതിൽ നിന്നുതന്നെ -12 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+14x=12
0 എന്നതിൽ നിന്ന് -12 വ്യവകലനം ചെയ്യുക.
x^{2}+14x+7^{2}=12+7^{2}
7 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 14-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 7 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+14x+49=12+49
7 സ്ക്വയർ ചെയ്യുക.
x^{2}+14x+49=61
12, 49 എന്നതിൽ ചേർക്കുക.
\left(x+7\right)^{2}=61
x^{2}+14x+49 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+7\right)^{2}}=\sqrt{61}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+7=\sqrt{61} x+7=-\sqrt{61}
ലഘൂകരിക്കുക.
x=\sqrt{61}-7 x=-\sqrt{61}-7
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 7 കുറയ്ക്കുക.
x^{2}+14x-12=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-14±\sqrt{14^{2}-4\left(-12\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 14 എന്നതും c എന്നതിനായി -12 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-14±\sqrt{196-4\left(-12\right)}}{2}
14 സ്ക്വയർ ചെയ്യുക.
x=\frac{-14±\sqrt{196+48}}{2}
-4, -12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-14±\sqrt{244}}{2}
196, 48 എന്നതിൽ ചേർക്കുക.
x=\frac{-14±2\sqrt{61}}{2}
244 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{61}-14}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±2\sqrt{61}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14, 2\sqrt{61} എന്നതിൽ ചേർക്കുക.
x=\sqrt{61}-7
2 കൊണ്ട് -14+2\sqrt{61} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{61}-14}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±2\sqrt{61}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14 എന്നതിൽ നിന്ന് 2\sqrt{61} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{61}-7
2 കൊണ്ട് -14-2\sqrt{61} എന്നതിനെ ഹരിക്കുക.
x=\sqrt{61}-7 x=-\sqrt{61}-7
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+14x-12=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+14x-12-\left(-12\right)=-\left(-12\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 12 ചേർക്കുക.
x^{2}+14x=-\left(-12\right)
അതിൽ നിന്നുതന്നെ -12 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x^{2}+14x=12
0 എന്നതിൽ നിന്ന് -12 വ്യവകലനം ചെയ്യുക.
x^{2}+14x+7^{2}=12+7^{2}
7 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 14-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 7 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+14x+49=12+49
7 സ്ക്വയർ ചെയ്യുക.
x^{2}+14x+49=61
12, 49 എന്നതിൽ ചേർക്കുക.
\left(x+7\right)^{2}=61
x^{2}+14x+49 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+7\right)^{2}}=\sqrt{61}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+7=\sqrt{61} x+7=-\sqrt{61}
ലഘൂകരിക്കുക.
x=\sqrt{61}-7 x=-\sqrt{61}-7
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 7 കുറയ്ക്കുക.