x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-10
x=-5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}+13x+58+2x=8
2x ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+15x+58=8
15x നേടാൻ 13x, 2x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+15x+58-8=0
ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
x^{2}+15x+50=0
50 നേടാൻ 58 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
a+b=15 ab=50
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}+15x+50 ഫാക്ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,50 2,25 5,10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 50 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+50=51 2+25=27 5+10=15
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=5 b=10
സൊല്യൂഷൻ എന്നത് 15 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x+5\right)\left(x+10\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=-5 x=-10
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x+5=0, x+10=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+13x+58+2x=8
2x ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+15x+58=8
15x നേടാൻ 13x, 2x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+15x+58-8=0
ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
x^{2}+15x+50=0
50 നേടാൻ 58 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
a+b=15 ab=1\times 50=50
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+50 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,50 2,25 5,10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 50 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+50=51 2+25=27 5+10=15
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=5 b=10
സൊല്യൂഷൻ എന്നത് 15 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}+5x\right)+\left(10x+50\right)
x^{2}+15x+50 എന്നത് \left(x^{2}+5x\right)+\left(10x+50\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x+5\right)+10\left(x+5\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 10 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x+5\right)\left(x+10\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x+5 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=-5 x=-10
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x+5=0, x+10=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+13x+58+2x=8
2x ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+15x+58=8
15x നേടാൻ 13x, 2x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+15x+58-8=0
ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
x^{2}+15x+50=0
50 നേടാൻ 58 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
x=\frac{-15±\sqrt{15^{2}-4\times 50}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 15 എന്നതും c എന്നതിനായി 50 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-15±\sqrt{225-4\times 50}}{2}
15 സ്ക്വയർ ചെയ്യുക.
x=\frac{-15±\sqrt{225-200}}{2}
-4, 50 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-15±\sqrt{25}}{2}
225, -200 എന്നതിൽ ചേർക്കുക.
x=\frac{-15±5}{2}
25 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=-\frac{10}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-15±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -15, 5 എന്നതിൽ ചേർക്കുക.
x=-5
2 കൊണ്ട് -10 എന്നതിനെ ഹരിക്കുക.
x=-\frac{20}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-15±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -15 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
x=-10
2 കൊണ്ട് -20 എന്നതിനെ ഹരിക്കുക.
x=-5 x=-10
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}+13x+58+2x=8
2x ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+15x+58=8
15x നേടാൻ 13x, 2x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+15x=8-58
ഇരുവശങ്ങളിൽ നിന്നും 58 കുറയ്ക്കുക.
x^{2}+15x=-50
-50 നേടാൻ 8 എന്നതിൽ നിന്ന് 58 കുറയ്ക്കുക.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-50+\left(\frac{15}{2}\right)^{2}
\frac{15}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 15-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{15}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+15x+\frac{225}{4}=-50+\frac{225}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{15}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+15x+\frac{225}{4}=\frac{25}{4}
-50, \frac{225}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{15}{2}\right)^{2}=\frac{25}{4}
x^{2}+15x+\frac{225}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{15}{2}=\frac{5}{2} x+\frac{15}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
x=-5 x=-10
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{15}{2} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}