പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+12x-13=0
ഇരുവശങ്ങളിൽ നിന്നും 13 കുറയ്ക്കുക.
a+b=12 ab=-13
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}+12x-13 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-1 b=13
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x-1\right)\left(x+13\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=1 x=-13
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-1=0, x+13=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+12x-13=0
ഇരുവശങ്ങളിൽ നിന്നും 13 കുറയ്ക്കുക.
a+b=12 ab=1\left(-13\right)=-13
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-13 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-1 b=13
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x^{2}-x\right)+\left(13x-13\right)
x^{2}+12x-13 എന്നത് \left(x^{2}-x\right)+\left(13x-13\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-1\right)+13\left(x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 13 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-1\right)\left(x+13\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=1 x=-13
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-1=0, x+13=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}+12x=13
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x^{2}+12x-13=13-13
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 13 കുറയ്ക്കുക.
x^{2}+12x-13=0
അതിൽ നിന്നുതന്നെ 13 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=\frac{-12±\sqrt{12^{2}-4\left(-13\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 12 എന്നതും c എന്നതിനായി -13 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-12±\sqrt{144-4\left(-13\right)}}{2}
12 സ്ക്വയർ ചെയ്യുക.
x=\frac{-12±\sqrt{144+52}}{2}
-4, -13 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{196}}{2}
144, 52 എന്നതിൽ ചേർക്കുക.
x=\frac{-12±14}{2}
196 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-12±14}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12, 14 എന്നതിൽ ചേർക്കുക.
x=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=-\frac{26}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-12±14}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12 എന്നതിൽ നിന്ന് 14 വ്യവകലനം ചെയ്യുക.
x=-13
2 കൊണ്ട് -26 എന്നതിനെ ഹരിക്കുക.
x=1 x=-13
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+12x=13
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+12x+6^{2}=13+6^{2}
6 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 12-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 6 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+12x+36=13+36
6 സ്ക്വയർ ചെയ്യുക.
x^{2}+12x+36=49
13, 36 എന്നതിൽ ചേർക്കുക.
\left(x+6\right)^{2}=49
x^{2}+12x+36 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+6\right)^{2}}=\sqrt{49}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+6=7 x+6=-7
ലഘൂകരിക്കുക.
x=1 x=-13
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.