y എന്നതിനായി സോൾവ് ചെയ്യുക
y=-\frac{x+2}{2x+3}
x\neq -\frac{3}{2}
x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-\frac{3y+2}{2y+1}
y\neq -\frac{1}{2}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x\left(2y+1\right)=-3y-2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, y എന്ന വേരിയബിൾ -\frac{1}{2} എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും 2y+1 കൊണ്ട് ഗുണിക്കുക.
2xy+x=-3y-2
2y+1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2xy+x+3y=-2
3y ഇരു വശങ്ങളിലും ചേർക്കുക.
2xy+3y=-2-x
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
\left(2x+3\right)y=-2-x
y അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\left(2x+3\right)y=-x-2
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(2x+3\right)y}{2x+3}=\frac{-x-2}{2x+3}
ഇരുവശങ്ങളെയും 2x+3 കൊണ്ട് ഹരിക്കുക.
y=\frac{-x-2}{2x+3}
2x+3 കൊണ്ട് ഹരിക്കുന്നത്, 2x+3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
y=-\frac{x+2}{2x+3}
2x+3 കൊണ്ട് -2-x എന്നതിനെ ഹരിക്കുക.
y=-\frac{x+2}{2x+3}\text{, }y\neq -\frac{1}{2}
y എന്ന വേരിയബിൾ -\frac{1}{2} എന്നതിന് തുല്യമാക്കാനാകില്ല.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}