പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
w എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-11 ab=30
സമവാക്യം സോൾവ് ചെയ്യാൻ, w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് w^{2}-11w+30 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-30 -2,-15 -3,-10 -5,-6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=-5
സൊല്യൂഷൻ എന്നത് -11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(w-6\right)\left(w-5\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(w+a\right)\left(w+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
w=6 w=5
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ w-6=0, w-5=0 എന്നിവ സോൾവ് ചെയ്യുക.
a+b=-11 ab=1\times 30=30
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം w^{2}+aw+bw+30 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-30 -2,-15 -3,-10 -5,-6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=-5
സൊല്യൂഷൻ എന്നത് -11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(w^{2}-6w\right)+\left(-5w+30\right)
w^{2}-11w+30 എന്നത് \left(w^{2}-6w\right)+\left(-5w+30\right) എന്നായി തിരുത്തിയെഴുതുക.
w\left(w-6\right)-5\left(w-6\right)
ആദ്യ ഗ്രൂപ്പിലെ w എന്നതും രണ്ടാമത്തേതിലെ -5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(w-6\right)\left(w-5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് w-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
w=6 w=5
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ w-6=0, w-5=0 എന്നിവ സോൾവ് ചെയ്യുക.
w^{2}-11w+30=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
w=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 30}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -11 എന്നതും c എന്നതിനായി 30 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
w=\frac{-\left(-11\right)±\sqrt{121-4\times 30}}{2}
-11 സ്ക്വയർ ചെയ്യുക.
w=\frac{-\left(-11\right)±\sqrt{121-120}}{2}
-4, 30 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
w=\frac{-\left(-11\right)±\sqrt{1}}{2}
121, -120 എന്നതിൽ ചേർക്കുക.
w=\frac{-\left(-11\right)±1}{2}
1 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
w=\frac{11±1}{2}
-11 എന്നതിന്‍റെ വിപരീതം 11 ആണ്.
w=\frac{12}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, w=\frac{11±1}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11, 1 എന്നതിൽ ചേർക്കുക.
w=6
2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
w=\frac{10}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, w=\frac{11±1}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
w=5
2 കൊണ്ട് 10 എന്നതിനെ ഹരിക്കുക.
w=6 w=5
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
w^{2}-11w+30=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
w^{2}-11w+30-30=-30
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 30 കുറയ്ക്കുക.
w^{2}-11w=-30
അതിൽ നിന്നുതന്നെ 30 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
w^{2}-11w+\left(-\frac{11}{2}\right)^{2}=-30+\left(-\frac{11}{2}\right)^{2}
-\frac{11}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -11-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{11}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
w^{2}-11w+\frac{121}{4}=-30+\frac{121}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{11}{2} സ്ക്വയർ ചെയ്യുക.
w^{2}-11w+\frac{121}{4}=\frac{1}{4}
-30, \frac{121}{4} എന്നതിൽ ചേർക്കുക.
\left(w-\frac{11}{2}\right)^{2}=\frac{1}{4}
w^{2}-11w+\frac{121}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(w-\frac{11}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
w-\frac{11}{2}=\frac{1}{2} w-\frac{11}{2}=-\frac{1}{2}
ലഘൂകരിക്കുക.
w=6 w=5
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{11}{2} ചേർക്കുക.