പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
u എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

u^{2}-\frac{2}{3}u=\frac{5}{4}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
u^{2}-\frac{2}{3}u-\frac{5}{4}=\frac{5}{4}-\frac{5}{4}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{4} കുറയ്ക്കുക.
u^{2}-\frac{2}{3}u-\frac{5}{4}=0
അതിൽ നിന്നുതന്നെ \frac{5}{4} കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\left(-\frac{5}{4}\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -\frac{2}{3} എന്നതും c എന്നതിനായി -\frac{5}{4} എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\left(-\frac{5}{4}\right)}}{2}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{2}{3} സ്ക്വയർ ചെയ്യുക.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+5}}{2}
-4, -\frac{5}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{49}{9}}}{2}
\frac{4}{9}, 5 എന്നതിൽ ചേർക്കുക.
u=\frac{-\left(-\frac{2}{3}\right)±\frac{7}{3}}{2}
\frac{49}{9} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
u=\frac{\frac{2}{3}±\frac{7}{3}}{2}
-\frac{2}{3} എന്നതിന്‍റെ വിപരീതം \frac{2}{3} ആണ്.
u=\frac{3}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, u=\frac{\frac{2}{3}±\frac{7}{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{3} എന്നത് \frac{7}{3} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
u=-\frac{\frac{5}{3}}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, u=\frac{\frac{2}{3}±\frac{7}{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് \frac{2}{3} എന്നതിൽ നിന്ന് \frac{7}{3} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
u=-\frac{5}{6}
2 കൊണ്ട് -\frac{5}{3} എന്നതിനെ ഹരിക്കുക.
u=\frac{3}{2} u=-\frac{5}{6}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
u^{2}-\frac{2}{3}u=\frac{5}{4}
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
u^{2}-\frac{2}{3}u+\left(-\frac{1}{3}\right)^{2}=\frac{5}{4}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{2}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{5}{4}+\frac{1}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{3} സ്ക്വയർ ചെയ്യുക.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{49}{36}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{4} എന്നത് \frac{1}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(u-\frac{1}{3}\right)^{2}=\frac{49}{36}
u^{2}-\frac{2}{3}u+\frac{1}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(u-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{36}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
u-\frac{1}{3}=\frac{7}{6} u-\frac{1}{3}=-\frac{7}{6}
ലഘൂകരിക്കുക.
u=\frac{3}{2} u=-\frac{5}{6}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{3} ചേർക്കുക.