പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-17 ab=1\times 70=70
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം t^{2}+at+bt+70 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-70 -2,-35 -5,-14 -7,-10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 70 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=-7
സൊല്യൂഷൻ എന്നത് -17 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(t^{2}-10t\right)+\left(-7t+70\right)
t^{2}-17t+70 എന്നത് \left(t^{2}-10t\right)+\left(-7t+70\right) എന്നായി തിരുത്തിയെഴുതുക.
t\left(t-10\right)-7\left(t-10\right)
ആദ്യ ഗ്രൂപ്പിലെ t എന്നതും രണ്ടാമത്തേതിലെ -7 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(t-10\right)\left(t-7\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് t-10 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
t^{2}-17t+70=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
t=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 70}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
t=\frac{-\left(-17\right)±\sqrt{289-4\times 70}}{2}
-17 സ്ക്വയർ ചെയ്യുക.
t=\frac{-\left(-17\right)±\sqrt{289-280}}{2}
-4, 70 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
t=\frac{-\left(-17\right)±\sqrt{9}}{2}
289, -280 എന്നതിൽ ചേർക്കുക.
t=\frac{-\left(-17\right)±3}{2}
9 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
t=\frac{17±3}{2}
-17 എന്നതിന്‍റെ വിപരീതം 17 ആണ്.
t=\frac{20}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, t=\frac{17±3}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 17, 3 എന്നതിൽ ചേർക്കുക.
t=10
2 കൊണ്ട് 20 എന്നതിനെ ഹരിക്കുക.
t=\frac{14}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, t=\frac{17±3}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 17 എന്നതിൽ നിന്ന് 3 വ്യവകലനം ചെയ്യുക.
t=7
2 കൊണ്ട് 14 എന്നതിനെ ഹരിക്കുക.
t^{2}-17t+70=\left(t-10\right)\left(t-7\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 10 എന്നതും, x_{2}-നായി 7 എന്നതും പകരം വയ്‌ക്കുക.