പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
r എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=5 ab=-36
സമവാക്യം സോൾവ് ചെയ്യാൻ, r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് r^{2}+5r-36 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,36 -2,18 -3,12 -4,9 -6,6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -36 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-4 b=9
സൊല്യൂഷൻ എന്നത് 5 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(r-4\right)\left(r+9\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(r+a\right)\left(r+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
r=4 r=-9
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ r-4=0, r+9=0 എന്നിവ സോൾവ് ചെയ്യുക.
a+b=5 ab=1\left(-36\right)=-36
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം r^{2}+ar+br-36 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,36 -2,18 -3,12 -4,9 -6,6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -36 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-4 b=9
സൊല്യൂഷൻ എന്നത് 5 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(r^{2}-4r\right)+\left(9r-36\right)
r^{2}+5r-36 എന്നത് \left(r^{2}-4r\right)+\left(9r-36\right) എന്നായി തിരുത്തിയെഴുതുക.
r\left(r-4\right)+9\left(r-4\right)
ആദ്യ ഗ്രൂപ്പിലെ r എന്നതും രണ്ടാമത്തേതിലെ 9 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(r-4\right)\left(r+9\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് r-4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
r=4 r=-9
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ r-4=0, r+9=0 എന്നിവ സോൾവ് ചെയ്യുക.
r^{2}+5r-36=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
r=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി -36 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
r=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
5 സ്ക്വയർ ചെയ്യുക.
r=\frac{-5±\sqrt{25+144}}{2}
-4, -36 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
r=\frac{-5±\sqrt{169}}{2}
25, 144 എന്നതിൽ ചേർക്കുക.
r=\frac{-5±13}{2}
169 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
r=\frac{8}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, r=\frac{-5±13}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, 13 എന്നതിൽ ചേർക്കുക.
r=4
2 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
r=-\frac{18}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, r=\frac{-5±13}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് 13 വ്യവകലനം ചെയ്യുക.
r=-9
2 കൊണ്ട് -18 എന്നതിനെ ഹരിക്കുക.
r=4 r=-9
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
r^{2}+5r-36=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
r^{2}+5r-36-\left(-36\right)=-\left(-36\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 36 ചേർക്കുക.
r^{2}+5r=-\left(-36\right)
അതിൽ നിന്നുതന്നെ -36 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
r^{2}+5r=36
0 എന്നതിൽ നിന്ന് -36 വ്യവകലനം ചെയ്യുക.
r^{2}+5r+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 5-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
r^{2}+5r+\frac{25}{4}=36+\frac{25}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{2} സ്ക്വയർ ചെയ്യുക.
r^{2}+5r+\frac{25}{4}=\frac{169}{4}
36, \frac{25}{4} എന്നതിൽ ചേർക്കുക.
\left(r+\frac{5}{2}\right)^{2}=\frac{169}{4}
r^{2}+5r+\frac{25}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(r+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
r+\frac{5}{2}=\frac{13}{2} r+\frac{5}{2}=-\frac{13}{2}
ലഘൂകരിക്കുക.
r=4 r=-9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{2} കുറയ്ക്കുക.