പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
q എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
q എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

q^{2}+6q-18=-5
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
q^{2}+6q-18-\left(-5\right)=-5-\left(-5\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5 ചേർക്കുക.
q^{2}+6q-18-\left(-5\right)=0
അതിൽ നിന്നുതന്നെ -5 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
q^{2}+6q-13=0
-18 എന്നതിൽ നിന്ന് -5 വ്യവകലനം ചെയ്യുക.
q=\frac{-6±\sqrt{6^{2}-4\left(-13\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി -13 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
q=\frac{-6±\sqrt{36-4\left(-13\right)}}{2}
6 സ്ക്വയർ ചെയ്യുക.
q=\frac{-6±\sqrt{36+52}}{2}
-4, -13 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
q=\frac{-6±\sqrt{88}}{2}
36, 52 എന്നതിൽ ചേർക്കുക.
q=\frac{-6±2\sqrt{22}}{2}
88 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
q=\frac{2\sqrt{22}-6}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, q=\frac{-6±2\sqrt{22}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 2\sqrt{22} എന്നതിൽ ചേർക്കുക.
q=\sqrt{22}-3
2 കൊണ്ട് -6+2\sqrt{22} എന്നതിനെ ഹരിക്കുക.
q=\frac{-2\sqrt{22}-6}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, q=\frac{-6±2\sqrt{22}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 2\sqrt{22} വ്യവകലനം ചെയ്യുക.
q=-\sqrt{22}-3
2 കൊണ്ട് -6-2\sqrt{22} എന്നതിനെ ഹരിക്കുക.
q=\sqrt{22}-3 q=-\sqrt{22}-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
q^{2}+6q-18=-5
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
q^{2}+6q-18-\left(-18\right)=-5-\left(-18\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 18 ചേർക്കുക.
q^{2}+6q=-5-\left(-18\right)
അതിൽ നിന്നുതന്നെ -18 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
q^{2}+6q=13
-5 എന്നതിൽ നിന്ന് -18 വ്യവകലനം ചെയ്യുക.
q^{2}+6q+3^{2}=13+3^{2}
3 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 3 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
q^{2}+6q+9=13+9
3 സ്ക്വയർ ചെയ്യുക.
q^{2}+6q+9=22
13, 9 എന്നതിൽ ചേർക്കുക.
\left(q+3\right)^{2}=22
q^{2}+6q+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(q+3\right)^{2}}=\sqrt{22}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
q+3=\sqrt{22} q+3=-\sqrt{22}
ലഘൂകരിക്കുക.
q=\sqrt{22}-3 q=-\sqrt{22}-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
q^{2}+6q-18=-5
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
q^{2}+6q-18-\left(-5\right)=-5-\left(-5\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5 ചേർക്കുക.
q^{2}+6q-18-\left(-5\right)=0
അതിൽ നിന്നുതന്നെ -5 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
q^{2}+6q-13=0
-18 എന്നതിൽ നിന്ന് -5 വ്യവകലനം ചെയ്യുക.
q=\frac{-6±\sqrt{6^{2}-4\left(-13\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി -13 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
q=\frac{-6±\sqrt{36-4\left(-13\right)}}{2}
6 സ്ക്വയർ ചെയ്യുക.
q=\frac{-6±\sqrt{36+52}}{2}
-4, -13 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
q=\frac{-6±\sqrt{88}}{2}
36, 52 എന്നതിൽ ചേർക്കുക.
q=\frac{-6±2\sqrt{22}}{2}
88 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
q=\frac{2\sqrt{22}-6}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, q=\frac{-6±2\sqrt{22}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 2\sqrt{22} എന്നതിൽ ചേർക്കുക.
q=\sqrt{22}-3
2 കൊണ്ട് -6+2\sqrt{22} എന്നതിനെ ഹരിക്കുക.
q=\frac{-2\sqrt{22}-6}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, q=\frac{-6±2\sqrt{22}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 2\sqrt{22} വ്യവകലനം ചെയ്യുക.
q=-\sqrt{22}-3
2 കൊണ്ട് -6-2\sqrt{22} എന്നതിനെ ഹരിക്കുക.
q=\sqrt{22}-3 q=-\sqrt{22}-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
q^{2}+6q-18=-5
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
q^{2}+6q-18-\left(-18\right)=-5-\left(-18\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 18 ചേർക്കുക.
q^{2}+6q=-5-\left(-18\right)
അതിൽ നിന്നുതന്നെ -18 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
q^{2}+6q=13
-5 എന്നതിൽ നിന്ന് -18 വ്യവകലനം ചെയ്യുക.
q^{2}+6q+3^{2}=13+3^{2}
3 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 3 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
q^{2}+6q+9=13+9
3 സ്ക്വയർ ചെയ്യുക.
q^{2}+6q+9=22
13, 9 എന്നതിൽ ചേർക്കുക.
\left(q+3\right)^{2}=22
q^{2}+6q+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(q+3\right)^{2}}=\sqrt{22}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
q+3=\sqrt{22} q+3=-\sqrt{22}
ലഘൂകരിക്കുക.
q=\sqrt{22}-3 q=-\sqrt{22}-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.