K എന്നതിനായി സോൾവ് ചെയ്യുക
K=\frac{4q}{9}
q എന്നതിനായി സോൾവ് ചെയ്യുക
q=\frac{9K}{4}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
q=\frac{K\times 2\times 9}{8}
2-ന്റെ പവറിലേക്ക് 3 കണക്കാക്കി 9 നേടുക.
q=\frac{K\times 18}{8}
18 നേടാൻ 2, 9 എന്നിവ ഗുണിക്കുക.
q=K\times \frac{9}{4}
K\times \frac{9}{4} ലഭിക്കാൻ 8 ഉപയോഗിച്ച് K\times 18 വിഭജിക്കുക.
K\times \frac{9}{4}=q
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\frac{9}{4}K=q
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\frac{9}{4}K}{\frac{9}{4}}=\frac{q}{\frac{9}{4}}
\frac{9}{4} കൊണ്ട് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളെയും ഹരിക്കുക, ഇത് അംശത്തിന്റെ പരസ്പരപൂരകത്തിന്റെ ഇരുവശങ്ങളെയും ഗുണിക്കുന്നതിന് തുല്യമാണ്.
K=\frac{q}{\frac{9}{4}}
\frac{9}{4} കൊണ്ട് ഹരിക്കുന്നത്, \frac{9}{4} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
K=\frac{4q}{9}
\frac{9}{4} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് q ഗുണിക്കുന്നതിലൂടെ \frac{9}{4} കൊണ്ട് q എന്നതിനെ ഹരിക്കുക.
q=\frac{K\times 2\times 9}{8}
2-ന്റെ പവറിലേക്ക് 3 കണക്കാക്കി 9 നേടുക.
q=\frac{K\times 18}{8}
18 നേടാൻ 2, 9 എന്നിവ ഗുണിക്കുക.
q=K\times \frac{9}{4}
K\times \frac{9}{4} ലഭിക്കാൻ 8 ഉപയോഗിച്ച് K\times 18 വിഭജിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}