പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
n എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

n^{2}+n-2048=0
n+1 കൊണ്ട് n ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
n=\frac{-1±\sqrt{1^{2}-4\left(-2048\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി -2048 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
n=\frac{-1±\sqrt{1-4\left(-2048\right)}}{2}
1 സ്ക്വയർ ചെയ്യുക.
n=\frac{-1±\sqrt{1+8192}}{2}
-4, -2048 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-1±\sqrt{8193}}{2}
1, 8192 എന്നതിൽ ചേർക്കുക.
n=\frac{\sqrt{8193}-1}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, n=\frac{-1±\sqrt{8193}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, \sqrt{8193} എന്നതിൽ ചേർക്കുക.
n=\frac{-\sqrt{8193}-1}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, n=\frac{-1±\sqrt{8193}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് \sqrt{8193} വ്യവകലനം ചെയ്യുക.
n=\frac{\sqrt{8193}-1}{2} n=\frac{-\sqrt{8193}-1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
n^{2}+n-2048=0
n+1 കൊണ്ട് n ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
n^{2}+n=2048
2048 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=2048+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{1}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
n^{2}+n+\frac{1}{4}=2048+\frac{1}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{2} സ്ക്വയർ ചെയ്യുക.
n^{2}+n+\frac{1}{4}=\frac{8193}{4}
2048, \frac{1}{4} എന്നതിൽ ചേർക്കുക.
\left(n+\frac{1}{2}\right)^{2}=\frac{8193}{4}
n^{2}+n+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{8193}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
n+\frac{1}{2}=\frac{\sqrt{8193}}{2} n+\frac{1}{2}=-\frac{\sqrt{8193}}{2}
ലഘൂകരിക്കുക.
n=\frac{\sqrt{8193}-1}{2} n=\frac{-\sqrt{8193}-1}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{2} കുറയ്ക്കുക.