പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
n എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-11 ab=-60
സമവാക്യം സോൾവ് ചെയ്യാൻ, n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് n^{2}-11n-60 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -60 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-15 b=4
സൊല്യൂഷൻ എന്നത് -11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(n-15\right)\left(n+4\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(n+a\right)\left(n+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
n=15 n=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ n-15=0, n+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
a+b=-11 ab=1\left(-60\right)=-60
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം n^{2}+an+bn-60 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -60 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-15 b=4
സൊല്യൂഷൻ എന്നത് -11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(n^{2}-15n\right)+\left(4n-60\right)
n^{2}-11n-60 എന്നത് \left(n^{2}-15n\right)+\left(4n-60\right) എന്നായി തിരുത്തിയെഴുതുക.
n\left(n-15\right)+4\left(n-15\right)
ആദ്യ ഗ്രൂപ്പിലെ n എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(n-15\right)\left(n+4\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് n-15 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
n=15 n=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ n-15=0, n+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
n^{2}-11n-60=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
n=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-60\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -11 എന്നതും c എന്നതിനായി -60 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
n=\frac{-\left(-11\right)±\sqrt{121-4\left(-60\right)}}{2}
-11 സ്ക്വയർ ചെയ്യുക.
n=\frac{-\left(-11\right)±\sqrt{121+240}}{2}
-4, -60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-\left(-11\right)±\sqrt{361}}{2}
121, 240 എന്നതിൽ ചേർക്കുക.
n=\frac{-\left(-11\right)±19}{2}
361 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
n=\frac{11±19}{2}
-11 എന്നതിന്‍റെ വിപരീതം 11 ആണ്.
n=\frac{30}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, n=\frac{11±19}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11, 19 എന്നതിൽ ചേർക്കുക.
n=15
2 കൊണ്ട് 30 എന്നതിനെ ഹരിക്കുക.
n=-\frac{8}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, n=\frac{11±19}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 11 എന്നതിൽ നിന്ന് 19 വ്യവകലനം ചെയ്യുക.
n=-4
2 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
n=15 n=-4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
n^{2}-11n-60=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
n^{2}-11n-60-\left(-60\right)=-\left(-60\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 60 ചേർക്കുക.
n^{2}-11n=-\left(-60\right)
അതിൽ നിന്നുതന്നെ -60 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
n^{2}-11n=60
0 എന്നതിൽ നിന്ന് -60 വ്യവകലനം ചെയ്യുക.
n^{2}-11n+\left(-\frac{11}{2}\right)^{2}=60+\left(-\frac{11}{2}\right)^{2}
-\frac{11}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -11-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{11}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
n^{2}-11n+\frac{121}{4}=60+\frac{121}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{11}{2} സ്ക്വയർ ചെയ്യുക.
n^{2}-11n+\frac{121}{4}=\frac{361}{4}
60, \frac{121}{4} എന്നതിൽ ചേർക്കുക.
\left(n-\frac{11}{2}\right)^{2}=\frac{361}{4}
n^{2}-11n+\frac{121}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(n-\frac{11}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
n-\frac{11}{2}=\frac{19}{2} n-\frac{11}{2}=-\frac{19}{2}
ലഘൂകരിക്കുക.
n=15 n=-4
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{11}{2} ചേർക്കുക.