n എന്നതിനായി സോൾവ് ചെയ്യുക
n=3\sqrt{662485}-2265\approx 176.795445978
n=-3\sqrt{662485}-2265\approx -4706.795445978
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
n^{2}+4530n-12060\times 69=0
4530 നേടാൻ 30, 151 എന്നിവ ഗുണിക്കുക.
n^{2}+4530n-832140=0
832140 നേടാൻ 12060, 69 എന്നിവ ഗുണിക്കുക.
n=\frac{-4530±\sqrt{4530^{2}-4\left(-832140\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 4530 എന്നതും c എന്നതിനായി -832140 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
n=\frac{-4530±\sqrt{20520900-4\left(-832140\right)}}{2}
4530 സ്ക്വയർ ചെയ്യുക.
n=\frac{-4530±\sqrt{20520900+3328560}}{2}
-4, -832140 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-4530±\sqrt{23849460}}{2}
20520900, 3328560 എന്നതിൽ ചേർക്കുക.
n=\frac{-4530±6\sqrt{662485}}{2}
23849460 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
n=\frac{6\sqrt{662485}-4530}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, n=\frac{-4530±6\sqrt{662485}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4530, 6\sqrt{662485} എന്നതിൽ ചേർക്കുക.
n=3\sqrt{662485}-2265
2 കൊണ്ട് -4530+6\sqrt{662485} എന്നതിനെ ഹരിക്കുക.
n=\frac{-6\sqrt{662485}-4530}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, n=\frac{-4530±6\sqrt{662485}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4530 എന്നതിൽ നിന്ന് 6\sqrt{662485} വ്യവകലനം ചെയ്യുക.
n=-3\sqrt{662485}-2265
2 കൊണ്ട് -4530-6\sqrt{662485} എന്നതിനെ ഹരിക്കുക.
n=3\sqrt{662485}-2265 n=-3\sqrt{662485}-2265
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
n^{2}+4530n-12060\times 69=0
4530 നേടാൻ 30, 151 എന്നിവ ഗുണിക്കുക.
n^{2}+4530n-832140=0
832140 നേടാൻ 12060, 69 എന്നിവ ഗുണിക്കുക.
n^{2}+4530n=832140
832140 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
n^{2}+4530n+2265^{2}=832140+2265^{2}
2265 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 4530-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും 2265 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
n^{2}+4530n+5130225=832140+5130225
2265 സ്ക്വയർ ചെയ്യുക.
n^{2}+4530n+5130225=5962365
832140, 5130225 എന്നതിൽ ചേർക്കുക.
\left(n+2265\right)^{2}=5962365
n^{2}+4530n+5130225 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(n+2265\right)^{2}}=\sqrt{5962365}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
n+2265=3\sqrt{662485} n+2265=-3\sqrt{662485}
ലഘൂകരിക്കുക.
n=3\sqrt{662485}-2265 n=-3\sqrt{662485}-2265
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 2265 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}