പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

5\left(-x^{2}+2x+3\right)
5 ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=2 ab=-3=-3
-x^{2}+2x+3 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -x^{2}+ax+bx+3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=3 b=-1
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3 എന്നത് \left(-x^{2}+3x\right)+\left(-x+3\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(x-3\right)-\left(x-3\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-3\right)\left(-x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
5\left(x-3\right)\left(-x-1\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
-5x^{2}+10x+15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\times 15}}{2\left(-5\right)}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-10±\sqrt{100-4\left(-5\right)\times 15}}{2\left(-5\right)}
10 സ്ക്വയർ ചെയ്യുക.
x=\frac{-10±\sqrt{100+20\times 15}}{2\left(-5\right)}
-4, -5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-10±\sqrt{100+300}}{2\left(-5\right)}
20, 15 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-10±\sqrt{400}}{2\left(-5\right)}
100, 300 എന്നതിൽ ചേർക്കുക.
x=\frac{-10±20}{2\left(-5\right)}
400 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-10±20}{-10}
2, -5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{10}{-10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-10±20}{-10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -10, 20 എന്നതിൽ ചേർക്കുക.
x=-1
-10 കൊണ്ട് 10 എന്നതിനെ ഹരിക്കുക.
x=-\frac{30}{-10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-10±20}{-10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -10 എന്നതിൽ നിന്ന് 20 വ്യവകലനം ചെയ്യുക.
x=3
-10 കൊണ്ട് -30 എന്നതിനെ ഹരിക്കുക.
-5x^{2}+10x+15=-5\left(x-\left(-1\right)\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -1 എന്നതും, x_{2}-നായി 3 എന്നതും പകരം വയ്‌ക്കുക.
-5x^{2}+10x+15=-5\left(x+1\right)\left(x-3\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.