പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=29 ab=-2\left(-90\right)=180
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -2x^{2}+ax+bx-90 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 180 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=20 b=9
സൊല്യൂഷൻ എന്നത് 29 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-2x^{2}+20x\right)+\left(9x-90\right)
-2x^{2}+29x-90 എന്നത് \left(-2x^{2}+20x\right)+\left(9x-90\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(-x+10\right)-9\left(-x+10\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ -9 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-x+10\right)\left(2x-9\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -x+10 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
-2x^{2}+29x-90=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-29±\sqrt{29^{2}-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-29±\sqrt{841-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
29 സ്ക്വയർ ചെയ്യുക.
x=\frac{-29±\sqrt{841+8\left(-90\right)}}{2\left(-2\right)}
-4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-29±\sqrt{841-720}}{2\left(-2\right)}
8, -90 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-29±\sqrt{121}}{2\left(-2\right)}
841, -720 എന്നതിൽ ചേർക്കുക.
x=\frac{-29±11}{2\left(-2\right)}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-29±11}{-4}
2, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{18}{-4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-29±11}{-4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -29, 11 എന്നതിൽ ചേർക്കുക.
x=\frac{9}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-18}{-4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{40}{-4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-29±11}{-4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -29 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=10
-4 കൊണ്ട് -40 എന്നതിനെ ഹരിക്കുക.
-2x^{2}+29x-90=-2\left(x-\frac{9}{2}\right)\left(x-10\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{9}{2} എന്നതും, x_{2}-നായി 10 എന്നതും പകരം വയ്‌ക്കുക.
-2x^{2}+29x-90=-2\times \frac{-2x+9}{-2}\left(x-10\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{9}{2} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
-2x^{2}+29x-90=\left(-2x+9\right)\left(x-10\right)
-2, 2 എന്നിവയിലെ 2 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.