പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

p+q=3 pq=1\left(-4\right)=-4
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം b^{2}+pb+qb-4 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. p, q എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,4 -2,2
pq നെഗറ്റീവ് ആയതിനാൽ p, q എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. p+q പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -4 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+4=3 -2+2=0
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
p=-1 q=4
സൊല്യൂഷൻ എന്നത് 3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(b^{2}-b\right)+\left(4b-4\right)
b^{2}+3b-4 എന്നത് \left(b^{2}-b\right)+\left(4b-4\right) എന്നായി തിരുത്തിയെഴുതുക.
b\left(b-1\right)+4\left(b-1\right)
ആദ്യ ഗ്രൂപ്പിലെ b എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(b-1\right)\left(b+4\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് b-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
b^{2}+3b-4=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
b=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
b=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
3 സ്ക്വയർ ചെയ്യുക.
b=\frac{-3±\sqrt{9+16}}{2}
-4, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
b=\frac{-3±\sqrt{25}}{2}
9, 16 എന്നതിൽ ചേർക്കുക.
b=\frac{-3±5}{2}
25 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
b=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, b=\frac{-3±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, 5 എന്നതിൽ ചേർക്കുക.
b=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
b=-\frac{8}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, b=\frac{-3±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
b=-4
2 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
b^{2}+3b-4=\left(b-1\right)\left(b-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 1 എന്നതും, x_{2}-നായി -4 എന്നതും പകരം വയ്‌ക്കുക.
b^{2}+3b-4=\left(b-1\right)\left(b+4\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.