a എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}a=\frac{b}{bx-1}\text{, }&x=0\text{ or }b\neq \frac{1}{x}\\a\in \mathrm{C}\text{, }&b=-\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
a എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}a=\frac{b}{bx-1}\text{, }&x=0\text{ or }b\neq \frac{1}{x}\\a\in \mathrm{R}\text{, }&b=-\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
b എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}b=-\frac{1}{x}\text{, }&x\neq 0\\b=\frac{a}{ax-1}\text{, }&x=0\text{ or }a\neq \frac{1}{x}\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
ab^{2}x^{2}-a=b^{2}x+b
b ഇരു വശങ്ങളിലും ചേർക്കുക.
\left(b^{2}x^{2}-1\right)a=b^{2}x+b
a അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\left(b^{2}x^{2}-1\right)a=xb^{2}+b
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(b^{2}x^{2}-1\right)a}{b^{2}x^{2}-1}=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
ഇരുവശങ്ങളെയും b^{2}x^{2}-1 കൊണ്ട് ഹരിക്കുക.
a=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
b^{2}x^{2}-1 കൊണ്ട് ഹരിക്കുന്നത്, b^{2}x^{2}-1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
a=\frac{b}{bx-1}
b^{2}x^{2}-1 കൊണ്ട് b\left(1+xb\right) എന്നതിനെ ഹരിക്കുക.
ab^{2}x^{2}-a=b^{2}x+b
b ഇരു വശങ്ങളിലും ചേർക്കുക.
\left(b^{2}x^{2}-1\right)a=b^{2}x+b
a അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\left(b^{2}x^{2}-1\right)a=xb^{2}+b
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\left(b^{2}x^{2}-1\right)a}{b^{2}x^{2}-1}=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
ഇരുവശങ്ങളെയും b^{2}x^{2}-1 കൊണ്ട് ഹരിക്കുക.
a=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
b^{2}x^{2}-1 കൊണ്ട് ഹരിക്കുന്നത്, b^{2}x^{2}-1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
a=\frac{b}{bx-1}
b^{2}x^{2}-1 കൊണ്ട് b\left(1+xb\right) എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}