പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{3}\left(a^{2}-b^{2}\right)-y^{3}\left(a^{2}-b^{2}\right)
a^{2}x^{3}-x^{3}b^{2}-a^{2}y^{3}+y^{3}b^{2}=\left(a^{2}x^{3}-x^{3}b^{2}\right)+\left(-a^{2}y^{3}+y^{3}b^{2}\right) ഗ്രൂപ്പുചെയ്‌ത ശേഷം ആദ്യത്തേതിൽ x^{3} എന്നതും രണ്ടാമത്തെ ഗ്രൂപ്പിൽ -y^{3} എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(a^{2}-b^{2}\right)\left(x^{3}-y^{3}\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് a^{2}-b^{2} എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(a-b\right)\left(a+b\right)
a^{2}-b^{2} പരിഗണിക്കുക. ചതുരങ്ങളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്‌ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
x^{3}-y^{3} പരിഗണിക്കുക. ക്യൂബുകളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്‌ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.