Y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}Y=-\frac{a\Delta }{a^{r}-1}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }a=e^{-\frac{2\pi n_{1}iRe(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\\Y\in \mathrm{C}\text{, }&\Delta =0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }a=e^{-\frac{2\pi n_{1}iRe(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}}}\end{matrix}\right.
Y എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}Y=-\frac{a\Delta }{a^{r}-1}\text{, }&\left(a=0\text{ and }r>0\right)\text{ or }\left(r\neq 0\text{ and }a\neq -1\text{ and }Denominator(r)\text{bmod}2=1\text{ and }a<0\right)\text{ or }\left(a<0\text{ and }Numerator(r)\text{bmod}2=1\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(r\neq 0\text{ and }a\neq 1\text{ and }a>0\right)\\Y\in \mathrm{R}\text{, }&\left(\Delta =0\text{ and }a=-1\text{ and }Numerator(r)\text{bmod}2=0\text{ and }Denominator(r)\text{bmod}2=1\right)\text{ or }\left(\Delta =0\text{ and }a=1\right)\text{ or }\left(\Delta =0\text{ and }a\neq 0\text{ and }r=0\right)\end{matrix}\right.
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
Ya^{r}-Y=-\Delta a
ഇരുവശങ്ങളിൽ നിന്നും \Delta a കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
Ya^{r}-Y=-a\Delta
പദങ്ങൾ വീണ്ടും അടുക്കുക.
\left(a^{r}-1\right)Y=-a\Delta
Y അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(a^{r}-1\right)Y}{a^{r}-1}=-\frac{a\Delta }{a^{r}-1}
ഇരുവശങ്ങളെയും a^{r}-1 കൊണ്ട് ഹരിക്കുക.
Y=-\frac{a\Delta }{a^{r}-1}
a^{r}-1 കൊണ്ട് ഹരിക്കുന്നത്, a^{r}-1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
Ya^{r}-Y=-\Delta a
ഇരുവശങ്ങളിൽ നിന്നും \Delta a കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
Ya^{r}-Y=-a\Delta
പദങ്ങൾ വീണ്ടും അടുക്കുക.
\left(a^{r}-1\right)Y=-a\Delta
Y അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(a^{r}-1\right)Y}{a^{r}-1}=-\frac{a\Delta }{a^{r}-1}
ഇരുവശങ്ങളെയും a^{r}-1 കൊണ്ട് ഹരിക്കുക.
Y=-\frac{a\Delta }{a^{r}-1}
a^{r}-1 കൊണ്ട് ഹരിക്കുന്നത്, a^{r}-1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}