N_0 എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
N_{0}=e^{\frac{Im(t)arg(N)+iRe(t)arg(N)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}-\frac{2\pi n_{1}iRe(t)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}-\frac{2\pi n_{1}Im(t)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}}\left(|N|\right)^{\frac{Re(t)-iIm(t)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}}
n_{1}\in \mathrm{Z}
N എന്നതിനായി സോൾവ് ചെയ്യുക
N=N_{0}^{t}
\left(N_{0}<0\text{ and }Denominator(t)\text{bmod}2=1\right)\text{ or }\left(N_{0}=0\text{ and }t>0\right)\text{ or }N_{0}>0
N_0 എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}N_{0}=N^{\frac{1}{t}}\text{, }&\left(Numerator(t)\text{bmod}2=1\text{ and }Denominator(t)\text{bmod}2=1\text{ and }N<0\text{ and }N^{\frac{1}{t}}\neq 0\right)\text{ or }\left(N=0\text{ and }t>0\right)\text{ or }\left(N>0\text{ and }t\neq 0\right)\\N_{0}=-N^{\frac{1}{t}}\text{, }&\left(N<0\text{ and }Numerator(t)\text{bmod}2=1\text{ and }Numerator(t)\text{bmod}2=0\text{ and }Denominator(t)\text{bmod}2=1\text{ and }N^{\frac{1}{t}}\neq 0\right)\text{ or }\left(t\neq 0\text{ and }N>0\text{ and }Numerator(t)\text{bmod}2=0\text{ and }Denominator(t)\text{bmod}2=1\right)\text{ or }\left(Numerator(t)\text{bmod}2=0\text{ and }N=0\text{ and }t>0\right)\text{ or }\left(N>0\text{ and }t\neq 0\text{ and }N^{\frac{1}{t}}<0\text{ and }Numerator(t)\text{bmod}2=0\right)\\N_{0}\neq 0\text{, }&t=0\text{ and }N=1\end{matrix}\right.
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}