പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(x^{3}+8\right)\left(x^{3}+1\right)
x^{k}+m എന്ന രൂപത്തിന്‍റെ ഒരു ഘടകം കണ്ടെത്തുക, അതിൽ ഉയർന്ന പവറുള്ള x^{6} എന്ന ഏകപദത്തെ x^{k} എന്നതും 8 എന്ന സ്ഥിരാങ്ക ഘടകത്തെ m എന്നതും ഹരിക്കുന്നു. അത്തരം ഒരു ഘടകമാണ് x^{3}+8. ഈ ഘടകം ഉപയോഗിച്ച് ബഹുപദത്തെ ഹരിക്കുന്നതിലൂടെ അത് ഫാക്‌ടർ ചെയ്യുക.
\left(x+2\right)\left(x^{2}-2x+4\right)
x^{3}+8 പരിഗണിക്കുക. x^{3}+8 എന്നത് x^{3}+2^{3} എന്നായി തിരുത്തിയെഴുതുക. ക്യൂബുകളുടെ തുക ഈ നിയമം ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x+1\right)\left(x^{2}-x+1\right)
x^{3}+1 പരിഗണിക്കുക. x^{3}+1 എന്നത് x^{3}+1^{3} എന്നായി തിരുത്തിയെഴുതുക. ക്യൂബുകളുടെ തുക ഈ നിയമം ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}-x+1\right)\left(x+1\right)\left(x+2\right)\left(x^{2}-2x+4\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക. ഇനിപ്പറയുന്ന ബഹുപദങ്ങളിൽ പരിമേയ വർഗ്ഗങ്ങൾ ഒന്നും ഇല്ലാത്തതിനാൽ അവ ഫാക്‌ടർ ചെയ്‌തില്ല: x^{2}-x+1,x^{2}-2x+4.
x^{6}+9x^{3}+8
8 ലഭ്യമാക്കാൻ 0, 8 എന്നിവ ചേർക്കുക.