ഘടകം
3\left(t+1\right)\left(t+5\right)t^{2}
മൂല്യനിർണ്ണയം ചെയ്യുക
3\left(t+1\right)\left(t+5\right)t^{2}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3\left(t^{4}+6t^{3}+5t^{2}\right)
3 ഘടക ലഘൂകരണം ചെയ്യുക.
t^{2}\left(t^{2}+6t+5\right)
t^{4}+6t^{3}+5t^{2} പരിഗണിക്കുക. t^{2} ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=6 ab=1\times 5=5
t^{2}+6t+5 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം t^{2}+at+bt+5 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=1 b=5
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(t^{2}+t\right)+\left(5t+5\right)
t^{2}+6t+5 എന്നത് \left(t^{2}+t\right)+\left(5t+5\right) എന്നായി തിരുത്തിയെഴുതുക.
t\left(t+1\right)+5\left(t+1\right)
ആദ്യ ഗ്രൂപ്പിലെ t എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(t+1\right)\left(t+5\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് t+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
3t^{2}\left(t+1\right)\left(t+5\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}