പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3\left(3x^{2}+13x+14\right)
3 ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=13 ab=3\times 14=42
3x^{2}+13x+14 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 3x^{2}+ax+bx+14 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,42 2,21 3,14 6,7
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 42 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+42=43 2+21=23 3+14=17 6+7=13
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=6 b=7
സൊല്യൂഷൻ എന്നത് 13 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(3x^{2}+6x\right)+\left(7x+14\right)
3x^{2}+13x+14 എന്നത് \left(3x^{2}+6x\right)+\left(7x+14\right) എന്നായി തിരുത്തിയെഴുതുക.
3x\left(x+2\right)+7\left(x+2\right)
ആദ്യ ഗ്രൂപ്പിലെ 3x എന്നതും രണ്ടാമത്തേതിലെ 7 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x+2\right)\left(3x+7\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x+2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
3\left(x+2\right)\left(3x+7\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
9x^{2}+39x+42=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-39±\sqrt{39^{2}-4\times 9\times 42}}{2\times 9}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-39±\sqrt{1521-4\times 9\times 42}}{2\times 9}
39 സ്ക്വയർ ചെയ്യുക.
x=\frac{-39±\sqrt{1521-36\times 42}}{2\times 9}
-4, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-39±\sqrt{1521-1512}}{2\times 9}
-36, 42 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-39±\sqrt{9}}{2\times 9}
1521, -1512 എന്നതിൽ ചേർക്കുക.
x=\frac{-39±3}{2\times 9}
9 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-39±3}{18}
2, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{36}{18}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-39±3}{18} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -39, 3 എന്നതിൽ ചേർക്കുക.
x=-2
18 കൊണ്ട് -36 എന്നതിനെ ഹരിക്കുക.
x=-\frac{42}{18}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-39±3}{18} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -39 എന്നതിൽ നിന്ന് 3 വ്യവകലനം ചെയ്യുക.
x=-\frac{7}{3}
6 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-42}{18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
9x^{2}+39x+42=9\left(x-\left(-2\right)\right)\left(x-\left(-\frac{7}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -2 എന്നതും, x_{2}-നായി -\frac{7}{3} എന്നതും പകരം വയ്‌ക്കുക.
9x^{2}+39x+42=9\left(x+2\right)\left(x+\frac{7}{3}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
9x^{2}+39x+42=9\left(x+2\right)\times \frac{3x+7}{3}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{7}{3} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
9x^{2}+39x+42=3\left(x+2\right)\left(3x+7\right)
9, 3 എന്നിവയിലെ 3 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.