പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

9x^{2}-6x+28=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\times 28}}{2\times 9}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 9 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 28 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\times 28}}{2\times 9}
-6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-36\times 28}}{2\times 9}
-4, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{36-1008}}{2\times 9}
-36, 28 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{-972}}{2\times 9}
36, -1008 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-6\right)±18\sqrt{3}i}{2\times 9}
-972 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{6±18\sqrt{3}i}{2\times 9}
-6 എന്നതിന്‍റെ വിപരീതം 6 ആണ്.
x=\frac{6±18\sqrt{3}i}{18}
2, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{6+18\sqrt{3}i}{18}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{6±18\sqrt{3}i}{18} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6, 18i\sqrt{3} എന്നതിൽ ചേർക്കുക.
x=\frac{1}{3}+\sqrt{3}i
18 കൊണ്ട് 6+18i\sqrt{3} എന്നതിനെ ഹരിക്കുക.
x=\frac{-18\sqrt{3}i+6}{18}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{6±18\sqrt{3}i}{18} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6 എന്നതിൽ നിന്ന് 18i\sqrt{3} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{3}i+\frac{1}{3}
18 കൊണ്ട് 6-18i\sqrt{3} എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{3}+\sqrt{3}i x=-\sqrt{3}i+\frac{1}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
9x^{2}-6x+28=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
9x^{2}-6x+28-28=-28
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 28 കുറയ്ക്കുക.
9x^{2}-6x=-28
അതിൽ നിന്നുതന്നെ 28 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{9x^{2}-6x}{9}=-\frac{28}{9}
ഇരുവശങ്ങളെയും 9 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{6}{9}\right)x=-\frac{28}{9}
9 കൊണ്ട് ഹരിക്കുന്നത്, 9 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{2}{3}x=-\frac{28}{9}
3 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{9} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{28}{9}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{2}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-28+1}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-3
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{28}{9} എന്നത് \frac{1}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{3}\right)^{2}=-3
x^{2}-\frac{2}{3}x+\frac{1}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{3}=\sqrt{3}i x-\frac{1}{3}=-\sqrt{3}i
ലഘൂകരിക്കുക.
x=\frac{1}{3}+\sqrt{3}i x=-\sqrt{3}i+\frac{1}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{3} ചേർക്കുക.