x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{3+\sqrt{3551}i}{89}\approx 0.033707865+0.669553569i
x=\frac{-\sqrt{3551}i+3}{89}\approx 0.033707865-0.669553569i
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
89x^{2}-6x+40=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 89\times 40}}{2\times 89}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 89 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 40 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 89\times 40}}{2\times 89}
-6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-6\right)±\sqrt{36-356\times 40}}{2\times 89}
-4, 89 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{36-14240}}{2\times 89}
-356, 40 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{-14204}}{2\times 89}
36, -14240 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-6\right)±2\sqrt{3551}i}{2\times 89}
-14204 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{6±2\sqrt{3551}i}{2\times 89}
-6 എന്നതിന്റെ വിപരീതം 6 ആണ്.
x=\frac{6±2\sqrt{3551}i}{178}
2, 89 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{6+2\sqrt{3551}i}{178}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{6±2\sqrt{3551}i}{178} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6, 2i\sqrt{3551} എന്നതിൽ ചേർക്കുക.
x=\frac{3+\sqrt{3551}i}{89}
178 കൊണ്ട് 6+2i\sqrt{3551} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{3551}i+6}{178}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{6±2\sqrt{3551}i}{178} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6 എന്നതിൽ നിന്ന് 2i\sqrt{3551} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{3551}i+3}{89}
178 കൊണ്ട് 6-2i\sqrt{3551} എന്നതിനെ ഹരിക്കുക.
x=\frac{3+\sqrt{3551}i}{89} x=\frac{-\sqrt{3551}i+3}{89}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
89x^{2}-6x+40=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
89x^{2}-6x+40-40=-40
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 40 കുറയ്ക്കുക.
89x^{2}-6x=-40
അതിൽ നിന്നുതന്നെ 40 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{89x^{2}-6x}{89}=-\frac{40}{89}
ഇരുവശങ്ങളെയും 89 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{6}{89}x=-\frac{40}{89}
89 കൊണ്ട് ഹരിക്കുന്നത്, 89 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{6}{89}x+\left(-\frac{3}{89}\right)^{2}=-\frac{40}{89}+\left(-\frac{3}{89}\right)^{2}
-\frac{3}{89} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{6}{89}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{89} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{6}{89}x+\frac{9}{7921}=-\frac{40}{89}+\frac{9}{7921}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{89} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{6}{89}x+\frac{9}{7921}=-\frac{3551}{7921}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{40}{89} എന്നത് \frac{9}{7921} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{89}\right)^{2}=-\frac{3551}{7921}
x^{2}-\frac{6}{89}x+\frac{9}{7921} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{89}\right)^{2}}=\sqrt{-\frac{3551}{7921}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{89}=\frac{\sqrt{3551}i}{89} x-\frac{3}{89}=-\frac{\sqrt{3551}i}{89}
ലഘൂകരിക്കുക.
x=\frac{3+\sqrt{3551}i}{89} x=\frac{-\sqrt{3551}i+3}{89}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{89} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}