പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-90 ab=81\times 25=2025
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 81x^{2}+ax+bx+25 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-2025 -3,-675 -5,-405 -9,-225 -15,-135 -25,-81 -27,-75 -45,-45
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 2025 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-2025=-2026 -3-675=-678 -5-405=-410 -9-225=-234 -15-135=-150 -25-81=-106 -27-75=-102 -45-45=-90
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-45 b=-45
സൊല്യൂഷൻ എന്നത് -90 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(81x^{2}-45x\right)+\left(-45x+25\right)
81x^{2}-90x+25 എന്നത് \left(81x^{2}-45x\right)+\left(-45x+25\right) എന്നായി തിരുത്തിയെഴുതുക.
9x\left(9x-5\right)-5\left(9x-5\right)
ആദ്യ ഗ്രൂപ്പിലെ 9x എന്നതും രണ്ടാമത്തേതിലെ -5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(9x-5\right)\left(9x-5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 9x-5 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(9x-5\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
factor(81x^{2}-90x+25)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(81,-90,25)=1
കോഎഫിഷ്യന്‍റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
\sqrt{81x^{2}}=9x
81x^{2} എന്ന ലീഡിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\sqrt{25}=5
25 എന്ന ട്രെയ്‌ലിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\left(9x-5\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്‍റെ സ്‌ക്വയർ ആണ്.
81x^{2}-90x+25=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 81\times 25}}{2\times 81}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 81\times 25}}{2\times 81}
-90 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-90\right)±\sqrt{8100-324\times 25}}{2\times 81}
-4, 81 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-90\right)±\sqrt{8100-8100}}{2\times 81}
-324, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-90\right)±\sqrt{0}}{2\times 81}
8100, -8100 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-90\right)±0}{2\times 81}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{90±0}{2\times 81}
-90 എന്നതിന്‍റെ വിപരീതം 90 ആണ്.
x=\frac{90±0}{162}
2, 81 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
81x^{2}-90x+25=81\left(x-\frac{5}{9}\right)\left(x-\frac{5}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{5}{9} എന്നതും, x_{2}-നായി \frac{5}{9} എന്നതും പകരം വയ്‌ക്കുക.
81x^{2}-90x+25=81\times \frac{9x-5}{9}\left(x-\frac{5}{9}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{5}{9} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
81x^{2}-90x+25=81\times \frac{9x-5}{9}\times \frac{9x-5}{9}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{5}{9} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
81x^{2}-90x+25=81\times \frac{\left(9x-5\right)\left(9x-5\right)}{9\times 9}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{9x-5}{9}, \frac{9x-5}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
81x^{2}-90x+25=81\times \frac{\left(9x-5\right)\left(9x-5\right)}{81}
9, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
81x^{2}-90x+25=\left(9x-5\right)\left(9x-5\right)
81, 81 എന്നിവയിലെ 81 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.