ഘടകം
\left(9x-10\right)^{2}
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(9x-10\right)^{2}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-180 ab=81\times 100=8100
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 81x^{2}+ax+bx+100 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-8100 -2,-4050 -3,-2700 -4,-2025 -5,-1620 -6,-1350 -9,-900 -10,-810 -12,-675 -15,-540 -18,-450 -20,-405 -25,-324 -27,-300 -30,-270 -36,-225 -45,-180 -50,-162 -54,-150 -60,-135 -75,-108 -81,-100 -90,-90
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 8100 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-8100=-8101 -2-4050=-4052 -3-2700=-2703 -4-2025=-2029 -5-1620=-1625 -6-1350=-1356 -9-900=-909 -10-810=-820 -12-675=-687 -15-540=-555 -18-450=-468 -20-405=-425 -25-324=-349 -27-300=-327 -30-270=-300 -36-225=-261 -45-180=-225 -50-162=-212 -54-150=-204 -60-135=-195 -75-108=-183 -81-100=-181 -90-90=-180
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-90 b=-90
സൊല്യൂഷൻ എന്നത് -180 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(81x^{2}-90x\right)+\left(-90x+100\right)
81x^{2}-180x+100 എന്നത് \left(81x^{2}-90x\right)+\left(-90x+100\right) എന്നായി തിരുത്തിയെഴുതുക.
9x\left(9x-10\right)-10\left(9x-10\right)
ആദ്യ ഗ്രൂപ്പിലെ 9x എന്നതും രണ്ടാമത്തേതിലെ -10 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(9x-10\right)\left(9x-10\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 9x-10 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(9x-10\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
factor(81x^{2}-180x+100)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(81,-180,100)=1
കോഎഫിഷ്യന്റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
\sqrt{81x^{2}}=9x
81x^{2} എന്ന ലീഡിംഗ് പദത്തിന്റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\sqrt{100}=10
100 എന്ന ട്രെയ്ലിംഗ് പദത്തിന്റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\left(9x-10\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്റെ സ്ക്വയർ ആണ്.
81x^{2}-180x+100=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 81\times 100}}{2\times 81}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 81\times 100}}{2\times 81}
-180 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-180\right)±\sqrt{32400-324\times 100}}{2\times 81}
-4, 81 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-180\right)±\sqrt{32400-32400}}{2\times 81}
-324, 100 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-180\right)±\sqrt{0}}{2\times 81}
32400, -32400 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-180\right)±0}{2\times 81}
0 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{180±0}{2\times 81}
-180 എന്നതിന്റെ വിപരീതം 180 ആണ്.
x=\frac{180±0}{162}
2, 81 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
81x^{2}-180x+100=81\left(x-\frac{10}{9}\right)\left(x-\frac{10}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി \frac{10}{9} എന്നതും, x_{2}-നായി \frac{10}{9} എന്നതും പകരം വയ്ക്കുക.
81x^{2}-180x+100=81\times \frac{9x-10}{9}\left(x-\frac{10}{9}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{10}{9} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
81x^{2}-180x+100=81\times \frac{9x-10}{9}\times \frac{9x-10}{9}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{10}{9} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
81x^{2}-180x+100=81\times \frac{\left(9x-10\right)\left(9x-10\right)}{9\times 9}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{9x-10}{9}, \frac{9x-10}{9} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
81x^{2}-180x+100=81\times \frac{\left(9x-10\right)\left(9x-10\right)}{81}
9, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
81x^{2}-180x+100=\left(9x-10\right)\left(9x-10\right)
81, 81 എന്നിവയിലെ 81 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}