പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x\left(800x-60000\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=75
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 800x-60000=0 എന്നിവ സോൾവ് ചെയ്യുക.
800x^{2}-60000x=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-60000\right)±\sqrt{\left(-60000\right)^{2}}}{2\times 800}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 800 എന്നതും b എന്നതിനായി -60000 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-60000\right)±60000}{2\times 800}
\left(-60000\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{60000±60000}{2\times 800}
-60000 എന്നതിന്‍റെ വിപരീതം 60000 ആണ്.
x=\frac{60000±60000}{1600}
2, 800 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{120000}{1600}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{60000±60000}{1600} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 60000, 60000 എന്നതിൽ ചേർക്കുക.
x=75
1600 കൊണ്ട് 120000 എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{1600}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{60000±60000}{1600} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 60000 എന്നതിൽ നിന്ന് 60000 വ്യവകലനം ചെയ്യുക.
x=0
1600 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=75 x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
800x^{2}-60000x=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{800x^{2}-60000x}{800}=\frac{0}{800}
ഇരുവശങ്ങളെയും 800 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{60000}{800}\right)x=\frac{0}{800}
800 കൊണ്ട് ഹരിക്കുന്നത്, 800 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-75x=\frac{0}{800}
800 കൊണ്ട് -60000 എന്നതിനെ ഹരിക്കുക.
x^{2}-75x=0
800 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-75x+\left(-\frac{75}{2}\right)^{2}=\left(-\frac{75}{2}\right)^{2}
-\frac{75}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -75-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{75}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-75x+\frac{5625}{4}=\frac{5625}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{75}{2} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{75}{2}\right)^{2}=\frac{5625}{4}
x^{2}-75x+\frac{5625}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{75}{2}\right)^{2}}=\sqrt{\frac{5625}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{75}{2}=\frac{75}{2} x-\frac{75}{2}=-\frac{75}{2}
ലഘൂകരിക്കുക.
x=75 x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{75}{2} ചേർക്കുക.