പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

8x^{2}-24x-24=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 8\left(-24\right)}}{2\times 8}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 8 എന്നതും b എന്നതിനായി -24 എന്നതും c എന്നതിനായി -24 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 8\left(-24\right)}}{2\times 8}
-24 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-24\right)±\sqrt{576-32\left(-24\right)}}{2\times 8}
-4, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-24\right)±\sqrt{576+768}}{2\times 8}
-32, -24 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-24\right)±\sqrt{1344}}{2\times 8}
576, 768 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-24\right)±8\sqrt{21}}{2\times 8}
1344 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{24±8\sqrt{21}}{2\times 8}
-24 എന്നതിന്‍റെ വിപരീതം 24 ആണ്.
x=\frac{24±8\sqrt{21}}{16}
2, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{8\sqrt{21}+24}{16}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{24±8\sqrt{21}}{16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 24, 8\sqrt{21} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{21}+3}{2}
16 കൊണ്ട് 24+8\sqrt{21} എന്നതിനെ ഹരിക്കുക.
x=\frac{24-8\sqrt{21}}{16}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{24±8\sqrt{21}}{16} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 24 എന്നതിൽ നിന്ന് 8\sqrt{21} വ്യവകലനം ചെയ്യുക.
x=\frac{3-\sqrt{21}}{2}
16 കൊണ്ട് 24-8\sqrt{21} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
8x^{2}-24x-24=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
8x^{2}-24x-24-\left(-24\right)=-\left(-24\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 24 ചേർക്കുക.
8x^{2}-24x=-\left(-24\right)
അതിൽ നിന്നുതന്നെ -24 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
8x^{2}-24x=24
0 എന്നതിൽ നിന്ന് -24 വ്യവകലനം ചെയ്യുക.
\frac{8x^{2}-24x}{8}=\frac{24}{8}
ഇരുവശങ്ങളെയും 8 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{24}{8}\right)x=\frac{24}{8}
8 കൊണ്ട് ഹരിക്കുന്നത്, 8 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-3x=\frac{24}{8}
8 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x=3
8 കൊണ്ട് 24 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=3+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=3+\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{21}{4}
3, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{21}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{\sqrt{21}}{2} x-\frac{3}{2}=-\frac{\sqrt{21}}{2}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.