പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

771-2x^{2}+x\leq 0
771 നേടാൻ 772 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
-771+2x^{2}-x\geq 0
771-2x^{2}+x എന്നതിലെ ഉയർന്ന പവറിന്‍റെ കോഎഫിഷ്യന്‍റ് പോസിറ്റീവ് ആക്കാൻ വ്യത്യാസത്തെ -1 കൊണ്ട് ഗുണിക്കുക. -1 നെഗറ്റീവ് ആയതിനാൽ, സമമല്ല ദിശ മാറി.
-771+2x^{2}-x=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-771\right)}}{2\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി -771 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{1±\sqrt{6169}}{4}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=\frac{\sqrt{6169}+1}{4} x=\frac{1-\sqrt{6169}}{4}
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ x=\frac{1±\sqrt{6169}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
2\left(x-\frac{\sqrt{6169}+1}{4}\right)\left(x-\frac{1-\sqrt{6169}}{4}\right)\geq 0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
x-\frac{\sqrt{6169}+1}{4}\leq 0 x-\frac{1-\sqrt{6169}}{4}\leq 0
ഫലം ≥0 ആകാൻ x-\frac{\sqrt{6169}+1}{4}, x-\frac{1-\sqrt{6169}}{4} എന്നിവ രണ്ടും ഒന്നുകിൽ ≤0 അല്ലെങ്കിൽ ≥0 ആയിരിക്കണം. x-\frac{\sqrt{6169}+1}{4}, x-\frac{1-\sqrt{6169}}{4} എന്നിവ രണ്ടും ≤0 ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
x\leq \frac{1-\sqrt{6169}}{4}
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x\leq \frac{1-\sqrt{6169}}{4} ആണ്.
x-\frac{1-\sqrt{6169}}{4}\geq 0 x-\frac{\sqrt{6169}+1}{4}\geq 0
x-\frac{\sqrt{6169}+1}{4}, x-\frac{1-\sqrt{6169}}{4} എന്നിവ രണ്ടും ≥0 ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
x\geq \frac{\sqrt{6169}+1}{4}
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x\geq \frac{\sqrt{6169}+1}{4} ആണ്.
x\leq \frac{1-\sqrt{6169}}{4}\text{; }x\geq \frac{\sqrt{6169}+1}{4}
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.