ഘടകം
\left(y-3\right)\left(y+3\right)\left(-y^{2}+3y-9\right)\left(y^{2}+3y+9\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(9-y^{2}\right)\left(\left(y^{2}+9\right)^{2}-9y^{2}\right)
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(27+y^{3}\right)\left(27-y^{3}\right)
729-y^{6} എന്നത് 27^{2}-\left(-y^{3}\right)^{2} എന്നായി തിരുത്തിയെഴുതുക. ചതുരങ്ങളുടെ വ്യത്യാസം ഇനിപ്പറയുന്ന നിയമം ഉപയോഗിച്ച് ഫക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(y^{3}+27\right)\left(-y^{3}+27\right)
പദങ്ങൾ വീണ്ടും അടുക്കുക.
\left(y+3\right)\left(y^{2}-3y+9\right)
y^{3}+27 പരിഗണിക്കുക. y^{3}+27 എന്നത് y^{3}+3^{3} എന്നായി തിരുത്തിയെഴുതുക. ക്യൂബുകളുടെ തുക ഈ നിയമം ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്യാൻ കഴിഞ്ഞേക്കാം: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(y-3\right)\left(-y^{2}-3y-9\right)
-y^{3}+27 പരിഗണിക്കുക. പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 27 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും -1 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. അത്തരം ഒരു വർഗ്ഗമാണ് 3. ഒരു ബഹുപദത്തെ y-3 കൊണ്ട് ഹരിക്കുന്നതിലൂടെ അത് ഫാക്ടർ ചെയ്യുക.
\left(-y^{2}-3y-9\right)\left(y-3\right)\left(y+3\right)\left(y^{2}-3y+9\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക. ഇനിപ്പറയുന്ന ബഹുപദങ്ങളിൽ പരിമേയ വർഗ്ഗങ്ങൾ ഒന്നും ഇല്ലാത്തതിനാൽ അവ ഫാക്ടർ ചെയ്തില്ല: -y^{2}-3y-9,y^{2}-3y+9.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}