പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

y\left(7-y\right)=0
y ഘടക ലഘൂകരണം ചെയ്യുക.
y=0 y=7
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ y=0, 7-y=0 എന്നിവ സോൾവ് ചെയ്യുക.
-y^{2}+7y=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-7±\sqrt{7^{2}}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 7 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-7±7}{2\left(-1\right)}
7^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{-7±7}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{0}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, y=\frac{-7±7}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7, 7 എന്നതിൽ ചേർക്കുക.
y=0
-2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
y=-\frac{14}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, y=\frac{-7±7}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
y=7
-2 കൊണ്ട് -14 എന്നതിനെ ഹരിക്കുക.
y=0 y=7
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-y^{2}+7y=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-y^{2}+7y}{-1}=\frac{0}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
y^{2}+\frac{7}{-1}y=\frac{0}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
y^{2}-7y=\frac{0}{-1}
-1 കൊണ്ട് 7 എന്നതിനെ ഹരിക്കുക.
y^{2}-7y=0
-1 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
y^{2}-7y+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -7-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{7}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
y^{2}-7y+\frac{49}{4}=\frac{49}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{2} സ്ക്വയർ ചെയ്യുക.
\left(y-\frac{7}{2}\right)^{2}=\frac{49}{4}
y^{2}-7y+\frac{49}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y-\frac{7}{2}=\frac{7}{2} y-\frac{7}{2}=-\frac{7}{2}
ലഘൂകരിക്കുക.
y=7 y=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{7}{2} ചേർക്കുക.